The bipartite edge frustration of composite graphs

作者: Zahra Yarahmadi , Tomislav Došlić , Ali Reza Ashrafi

DOI: 10.1016/J.DAM.2010.04.010

关键词:

摘要: The smallest number of edges that have to be deleted from a graph obtain bipartite spanning subgraph is called the edge frustration G and denoted by @f(G). In this paper we determine some classes composite graphs.

参考文章(12)
Douglas Brent West, Introduction to Graph Theory ,(1995)
Qing Cui, Jian Wang, Maximum bipartite subgraphs of cubic triangle-free planar graphs Discrete Mathematics. ,vol. 309, pp. 1091- 1111 ,(2009) , 10.1016/J.DISC.2007.12.001
Toufik Mansour, Matthias Schork, The vertex PI index and Szeged index of bridge graphs Discrete Applied Mathematics. ,vol. 157, pp. 1600- 1606 ,(2009) , 10.1016/J.DAM.2008.09.008
P Erdös, None, On some extremal problems in graph theory Israel Journal of Mathematics. ,vol. 3, pp. 113- 116 ,(1965) , 10.1007/BF02760037
C. S. Edwards, Some Extremal Properties of Bipartite Subgraphs Canadian Journal of Mathematics. ,vol. 25, pp. 475- 485 ,(1973) , 10.4153/CJM-1973-048-X
Glenn Hopkins, William Staton, Extremal bipartite subgraphs of cubic triangle‐free graphs Journal of Graph Theory. ,vol. 6, pp. 115- 121 ,(1982) , 10.1002/JGT.3190060205
Tomislav Došlić, Damir Vukičević, Computing the bipartite edge frustration of fullerene graphs Discrete Applied Mathematics. ,vol. 155, pp. 1294- 1301 ,(2007) , 10.1016/J.DAM.2006.12.003
J. A. Bondy, S. C. Locke, Largest bipartite subgraphs in triangle-free graphs with maximum degree three Journal of Graph Theory. ,vol. 10, pp. 477- 504 ,(1986) , 10.1002/JGT.3190100407
E. A. Nordhaus, J. W. Gaddum, On Complementary Graphs The American Mathematical Monthly. ,vol. 63, pp. 175- ,(1956) , 10.2307/2306658
Tomislav Došlić, Splices, Links, and Their Valence-Weighted Wiener Polynomials Graph Theory Notes of New York. pp. 47- 55 ,(2005)