Analyzing strengths and weaknesses of fuzzy association rules algorithms

作者: Jorge Casillas , Daniel Moreno Conejo

DOI:

关键词:

摘要: Tesis, Master Universitario en Soft Computing y Sistemas Inteligentes, Universidad de Granada.Espana

参考文章(33)
Albert Orriols-Puig, Jorge Casillas, Francisco J. Martínez-López, Automatic Discovery of Potential Causal Structures in Marketing Databases Based on Fuzzy Association Rules Marketing Intelligent Systems Using Soft Computing. pp. 181- 206 ,(2010) , 10.1007/978-3-642-15606-9_14
Ramakrishnan Srikant, Rakesh Agrawal, Fast algorithms for mining association rules very large data bases. pp. 580- 592 ,(1998)
Min-Thai Wu, Tzung-Pei Hong, Chung-Nan Lee, An improved ant algorithm for fuzzy data mining international conference on computational collective intelligence. pp. 344- 351 ,(2010) , 10.1007/978-3-642-16732-4_37
D. Sánchez, M.A. Vila, L. Cerda, J.M. Serrano, Association rules applied to credit card fraud detection Expert Systems with Applications. ,vol. 36, pp. 3630- 3640 ,(2009) , 10.1016/J.ESWA.2008.02.001
Hisao Ishibuchi, Isao Kuwajima, Yusuke Nojima, Relation between Pareto-Optimal Fuzzy Rules and Pareto-Optimal Fuzzy Rule Sets multiple criteria decision making. pp. 42- 49 ,(2007) , 10.1109/MCDM.2007.369415
Yi-Chung Hu, Ruey-Shun Chen, Gwo-Hshiung Tzeng, Discovering fuzzy association rules using fuzzy partition methods Knowledge-Based Systems. ,vol. 16, pp. 137- 147 ,(2003) , 10.1016/S0950-7051(02)00079-5
Keith C. C. Chan, Wai-Ho Au, An effective algorithm for mining interesting quantitative association rules acm symposium on applied computing. pp. 88- 90 ,(1997) , 10.1145/331697.331714
James C. Bezdek, Robert Ehrlich, William Full, FCM: The fuzzy c-means clustering algorithm Computers & Geosciences. ,vol. 10, pp. 191- 203 ,(1984) , 10.1016/0098-3004(84)90020-7
T. Runkler, F. Klawonn, R. Kruse, V. J. Rayward-Smith, F. Hoppner, Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition ,(1999)