The complex scaled Feynman–Kac formula for singular initial distributions

作者: Martin Grothaus , Ludwig Streit , Anna Vogel

DOI: 10.1080/17442508.2010.493612

关键词:

摘要: In this paper we study complex scaling in the Feynman–Kac formula, using fact that for a Dirac delta initial distribution, is well defined white noise analysis.

参考文章(28)
Takeyuki Hida, Hui-Hsiung Kuo, Jürgen Potthoff, Ludwig Streit, White Noise: An Infinite Dimensional Calculus ,(1993)
Martin Grothaus, Yuri G Kondratiev, Ludwig Streit, Complex Gaussian analysis and the Bargmann-Segal space Methods Funct. Anal. Topology. ,vol. 3, pp. 46- 64 ,(1997)
I︠u︡. M. Berezanskiĭ, I︠u︡. G. Kondratʹev, Spectral Methods in Infinite-Dimensional Analysis ,(1995)
Raphael Høegh-Krohn, Sonia Mazzucchi, Sergio Albeverio, Mathematical Theory of Feynman Path Integrals: An Introduction ,(2008)
Hui-Hsiung Kuo, White noise distribution theory ,(1996)
Barry Simon, Michael Reed, Methods of Modern Mathematical Physics ,(1972)
Martin Grothaus, Anna Vogel, Christopher C. Bernido, M. Victoria Carpio-Bernido, The Feynman integrand as a white noise distribution beyond perturbation theory STOCHASTIC AND QUANTUM DYNAMICS OF BIOMOLECULAR SYSTEMS: Proceedings of the 5th#N#Jagna International Workshop. ,vol. 1021, pp. 25- 33 ,(2008) , 10.1063/1.2956797
Jürgen Potthoff, Matthias Timpel, On a dual pair of spaces of smooth and generalized random variables Potential Analysis. ,vol. 4, pp. 637- 654 ,(1995) , 10.1007/BF02345829
L. Streit, T. Hida, Generalized Brownian functionals and the Feynman integral Stochastic Processes and their Applications. ,vol. 16, pp. 55- 69 ,(1984) , 10.1016/0304-4149(84)90175-3