A review and comparison of strategies for handling missing values in separate-and-conquer rule learning

作者: Lars Wohlrab , Johannes Fürnkranz

DOI: 10.1007/S10844-010-0121-8

关键词:

摘要: In this paper, we review possible strategies for handling missing values in separate-and-conquer rule learning algorithms, and compare them experimentally on a large number of datasets. particular through careful study with data controlled levels get additional insights the strategies' different biases w.r.t. attributes values. Somewhat surprisingly, strategy that implements strong bias against use values, exhibits best average performance 24 datasets from UCI repository.

参考文章(57)
Zbigniew W. Ras, Agnieszka Dardzinska, Extracting Rules from Incomplete Decision Systems: System ERID. Foundations and Novel Approaches in Data Mining. pp. 143- 153 ,(2006)
B. Twala, M. Cartwright, M. Shepperd, Comparison of various methods for handling incomplete data in software engineering databases international symposium on empirical software engineering. pp. 105- 114 ,(2005) , 10.1109/ISESE.2005.1541819
Jerzy W. Grzymala-Busse, LERS—A Data Mining System The Data Mining and Knowledge Discovery Handbook. pp. 1347- 1351 ,(2005) , 10.1007/0-387-25465-X_65
Dan Li, Jitender Deogun, William Spaulding, Bill Shuart, Dealing with Missing Data: Algorithms Based on Fuzzy Set and Rough Set Theories Transactions on Rough Sets IV. ,vol. 4, pp. 37- 57 ,(2005) , 10.1007/11574798_3
Győző Gidófalvi, Torben Bach Pedersen, Spatio–temporal Rule Mining: Issues and Techniques Data Warehousing and Knowledge Discovery. ,vol. 3589, pp. 275- 284 ,(2005) , 10.1007/11546849_27
J.R. Quinlan, Unknown attribute values in induction international conference on machine learning. pp. 164- 168 ,(1989) , 10.1016/B978-1-55860-036-2.50048-5