Predicting electrical power output by using Granular Computing based Neuro-Fuzzy modeling method

作者: Wenyue Sun , Jianhua Zhang , Rubin Wang

DOI: 10.1109/CCDC.2015.7162415

关键词:

摘要: The accurate prediction of electrical power output is crucial to reduce the cost for plant. Granular Computing (GrC) a new data mining method. It can combine objects which have similar characteristics form granules. In such procedure, core information be extracted while redundant and complexity target problem are both reduced. this paper, GrC used extract relational complex multidimensional set. knowledge translated into an initial fuzzy system parameters optimized by using Adaptive Neuro-Fuzzy Inference System (ANFIS) learning methods. use based modeling (GrC-NF) not only but also keep interpretability logic. Moreover, ANFIS improve performance model. Finally, model predicting built. result comparison demonstrates superiority

参考文章(16)
Urszula Kużelewska, Advantages of Information Granulation in Clustering Algorithms international conference on agents and artificial intelligence. pp. 131- 145 ,(2011) , 10.1007/978-3-642-29966-7_9
Witold Pedrycz, Granular computing: an introduction joint ifsa world congress and nafips international conference. ,vol. 3, pp. 1349- 1354 ,(2001) , 10.1007/978-3-7908-1856-7_15
A. Bargiela, W. Pedrycz, Classification and clustering of granular data joint ifsa world congress and nafips international conference. ,vol. 3, pp. 1696- 1701 ,(2001) , 10.1109/NAFIPS.2001.943807
G. Panoutsos, M. Mahfouf, Granular computing and evolutionary fuzzy modelling for mechanical properties of alloy steels IFAC Proceedings Volumes. ,vol. 38, pp. 205- 210 ,(2005) , 10.3182/20050703-6-CZ-1902.01713
J.-S.R. Jang, ANFIS: adaptive-network-based fuzzy inference system systems man and cybernetics. ,vol. 23, pp. 665- 685 ,(1993) , 10.1109/21.256541
Y. Yoshinari, W. Pedrycz, K. Hirota, Construction of fuzzy models through clustering techniques Fuzzy Sets and Systems. ,vol. 54, pp. 157- 165 ,(1993) , 10.1016/0165-0114(93)90273-K
Pınar Tüfekci, Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods International Journal of Electrical Power & Energy Systems. ,vol. 60, pp. 126- 140 ,(2014) , 10.1016/J.IJEPES.2014.02.027
Adrian Rubio Solis, George Panoutsos, Granular computing neural-fuzzy modelling: A neutrosophic approach soft computing. ,vol. 13, pp. 4010- 4021 ,(2013) , 10.1016/J.ASOC.2012.09.002
W. Pedrycz, A. Bargiela, Granular clustering: a granular signature of data systems man and cybernetics. ,vol. 32, pp. 212- 224 ,(2002) , 10.1109/3477.990878