Symmetric quadrature rules for simplexes based on sphere close packed lattice arrangements

作者: D.M. Williams , L. Shunn , A. Jameson

DOI: 10.1016/J.CAM.2014.01.007

关键词:

摘要: Sphere close packed (SCP) lattice arrangements of points are well-suited for formulating symmetric quadrature rules on simplexes, as they under affine transformations the simplex unto itself in 2D and 3D. As a result, SCP have been utilized to formulate with N"p=1, 4, 10, 20, 35, 56 3-simplex (Shunn Ham, 2012). In what follows, work is extended, lattices employed identify 3, 6, 15, 21, 28, 36, 45, 55, 66 2-simplex N"p=84 3-simplex. These found be capable exactly integrating polynomials up degree 17 9

参考文章(31)
Ronald Cools, An encyclopaedia of cubature formulas Journal of Complexity. ,vol. 19, pp. 445- 453 ,(2003) , 10.1016/S0885-064X(03)00011-6
Ronald Cools, Constructing cubature formulae: the science behind the art Acta Numerica. ,vol. 6, pp. 1- 54 ,(1997) , 10.1017/S0962492900002701
K.V.a Nagaraja, H.T.b Rathod, Symmetric Gauss Legendre quadrature rules for numerical integration over an arbitrary linear tetrahedra in Euclidean three-dimensional space International Journal of Mathematical Analysis. ,vol. 4, ,(2010)
David M Williams, Antony Jameson, None, Nodal Points and the Nonlinear Stability of High-Order Methods for Unsteady Flow Problems on Tetrahedral Meshes 21st AIAA Computational Fluid Dynamics Conference. ,(2013) , 10.2514/6.2013-2830
H.T. Rathod, K.V. Nagaraja, B. Venkatesh, Symmetric Gauss Legendre quadrature formulae for composite numerical integration over a tetrahedral region. Journal of Bulletin of Mathematics. ,vol. 24, ,(2007)
Philip E Gill, Walter Murray, Margaret H Wright, Practical Optimization ,(1981)
Jorge Nocedal, Stephen J. Wright, Numerical Optimization ,(2008)
M. J. D. Powell, A fast algorithm for nonlinearly constrained optimization calculations Springer Berlin Heidelberg. pp. 144- 157 ,(1978) , 10.1007/BFB0067703
M. J. D. Powell, Variable Metric Methods for Constrained Optimization Mathematical Programming The State of the Art. pp. 288- 311 ,(1983) , 10.1007/978-3-642-68874-4_12