An Experiment to Compare Taguchi's Product Array and the Combined Array

作者: J. Kunert , C. Auer , M. Erdbrügge , R. Ewers

DOI: 10.1080/00224065.2007.11917670

关键词:

摘要: In robust parameter design, experimenters try to optimize the process by moving mean target value and simultaneously reducing variance. Taguchi proposed use of a product array where same noise factors is run for each comb..

参考文章(11)
J. Kunert, F. Lehmkuhl, The Generalized β-Method in Taguchi Experiments Technical reports. pp. 223- 230 ,(1998) , 10.1007/978-3-642-58988-1_24
James M. Lucas, How to Achieve a Robust Process Using Response Surface Methodology Journal of Quality Technology. ,vol. 26, pp. 248- 260 ,(1994) , 10.1080/00224065.1994.11979537
Youngjo Lee, John A. Nelder, Robust Design via Generalized Linear Models Journal of Quality Technology. ,vol. 35, pp. 2- 12 ,(2003) , 10.1080/00224065.2003.11980187
David M. Steinberg, Dizza Bursztyn, Dispersion Effects in Robust-Design Experiments with Noise Factors Journal of Quality Technology. ,vol. 26, pp. 12- 20 ,(1994) , 10.1080/00224065.1994.11979494
Anne C.. Shoemaker, Kwok-Leung Tsui, Response model analysis for robust design experiments Communications in Statistics - Simulation and Computation. ,vol. 22, pp. 1037- 1064 ,(1993) , 10.1080/03610919308813141
Corinna Auer, Martina Erdbrügge, Roland Göbel, Comparison of multivariate methods for robust parameter design in sheet metal spinning Applied Stochastic Models in Business and Industry. ,vol. 20, pp. 201- 218 ,(2004) , 10.1002/ASMB.525
Raymond H. Myers, Andre I. Khuri, Geoffrey Vining, Response Surface Alternatives to the Taguchi Robust Parameter Design Approach The American Statistician. ,vol. 46, pp. 131- 139 ,(1992) , 10.1080/00031305.1992.10475869
Yves L. Grize, A review of robust process design approaches Journal of Chemometrics. ,vol. 9, pp. 239- 262 ,(1995) , 10.1002/CEM.1180090402
George E.P. Box, R. Daniel Meyer, Dispersion Effects From Fractional Designs Technometrics. ,vol. 28, pp. 19- 27 ,(1986) , 10.1080/00401706.1986.10488094
J. Engel, Modelling Variation in Industrial Experiments Applied statistics. ,vol. 41, pp. 579- 593 ,(1992) , 10.2307/2348091