Using analysis state to construct a forecast error covariance matrix in ensemble Kalman filter assimilation

作者: Xiaogu Zheng , Guocan Wu , Shupeng Zhang , Xiao Liang , Yongjiu Dai

DOI: 10.1007/S00376-012-2133-5

关键词:

摘要: Correctly estimating the forecast error covariance matrix is a key step in any data assimilation scheme. If it not correctly estimated, assimilated states could be far from true states. A popular method to address this problem inflation. That is, multiply by an appropriate factor. In paper, analysis are used construct and adaptive estimation procedure associated with inflation technique developed.

参考文章(35)
Edward N. Lorenz, Predictability-A problem partly solved Proc. Seminar on Predictability, Reading, UK, ECMWF, 1996. pp. 40- 58 ,(2006) , 10.1017/CBO9780511617652.004
T. E. Hull, W. H. Enright, B. M. Fellen, A. E. Sedgwick, Comparing Numerical Methods for Ordinary Differential Equations SIAM Journal on Numerical Analysis. ,vol. 11, pp. 603- 637 ,(1972) , 10.1137/0709052
Geir Evensen, Inverse methods and data assimilation in nonlinear ocean models Physica D: Nonlinear Phenomena. ,vol. 77, pp. 108- 129 ,(1994) , 10.1016/0167-2789(94)90130-9
Thomas M. Hamill, Jeffrey S. Whitaker, Accounting for the Error due to Unresolved Scales in Ensemble Data Assimilation: A Comparison of Different Approaches Monthly Weather Review. ,vol. 133, pp. 3132- 3147 ,(2005) , 10.1175/MWR3020.1
Edward N. Lorenz, Kerry A. Emanuel, Optimal Sites for Supplementary Weather Observations: Simulation with a Small Model Journal of the Atmospheric Sciences. ,vol. 55, pp. 399- 414 ,(1998) , 10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2