PARTICLE SWARM OPTIMIZER IN NOISY AND CONTINUOUSLY CHANGING ENVIRONMENTS

作者: K.E. Parsopoulos

DOI:

关键词:

摘要: In this paper we study the performance of recently proposed Particle Swarm optimization method in presence noisy and continuously changing environments. Experimental results for well known widely used test functions are given discussed. Conclusions its ability to cope with such environments as real– life applications also derived.

参考文章(21)
K. E. Parsopoulos, M. N. Vrahatis, Modification of the Particle Swarm Optimizer for Locating All the Global Minima Springer, Vienna. pp. 324- 327 ,(2001) , 10.1007/978-3-7091-6230-9_80
Peter J. Angeline, Tracking Extrema in Dynamic Environments Evolutionary Programming. pp. 335- 345 ,(1997) , 10.1007/BFB0014823
Russ Eberhart, Pat Simpson, Roy Dobbins, None, Computational intelligence PC tools ,(1996)
C. Elster, A. Neumaier, A method of trust region type for minimizing noisy functions Computing. ,vol. 58, pp. 31- 46 ,(1997) , 10.1007/BF02684470
G. E. P. Box, Mervin E. Muller, A Note on the Generation of Random Normal Deviates Annals of Mathematical Statistics. ,vol. 29, pp. 610- 611 ,(1958) , 10.1214/AOMS/1177706645
CLEMENS ELSTER, ARNOLD NEUMAIER, A grid algorithm for bound constrained optimization of noisy functions Ima Journal of Numerical Analysis. ,vol. 15, pp. 585- 608 ,(1995) , 10.1093/IMANUM/15.4.585
Saul A. Teukolsky, Brian P. Flannery, William T. Vetterling, William H. Press, Numerical Recipes in FORTRAN ,(1988)
Jorge J. Moré, Burton S. Garbow, Kenneth E. Hillstrom, Testing Unconstrained Optimization Software ACM Transactions on Mathematical Software. ,vol. 7, pp. 17- 41 ,(1981) , 10.1145/355934.355936