Character formulas for tilting modules over Kac-Moody algebras

作者: Wolfgang Soergel

DOI: 10.1090/S1088-4165-98-00057-0

关键词:

摘要:

参考文章(11)
Victor G. Kac, Infinite-Dimensional Lie Algebras idla. pp. 422- ,(1990) , 10.1017/CBO9780511626234
Claus Michael Ringel, The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences Mathematische Zeitschrift. ,vol. 208, pp. 209- 223 ,(1991) , 10.1007/BF02571521
David H. Collingwood, Ronald S. Irving, A decomposition theorem for certain self-dual modules in the category $\mathcal{O}$ Duke Mathematical Journal. ,vol. 58, pp. 89- 102 ,(1989) , 10.1215/S0012-7094-89-05806-7
S Donkin, Finite resolutions of modules for reductive algebraic groups Journal of Algebra. ,vol. 101, pp. 473- 488 ,(1986) , 10.1016/0021-8693(86)90206-1
D. Kazhdan, G. Lusztig, Tensor structures arising from affine Lie algebras. III Journal of the American Mathematical Society. ,vol. 6, pp. 335- 381 ,(1993) , 10.1090/S0894-0347-1993-1186962-0
Urs Stammbach, Peter John Hilton, A Course in Homological Algebra ,(1971)
Vinay V. Deodhar, Ofer Gabber, Victor Kac, Structure of some categories of representations of infinite-dimensional lie algebras Advances in Mathematics. ,vol. 45, pp. 92- 116 ,(1982) , 10.1016/S0001-8708(82)80014-5
Alexander A. Voronov, Semi-infinite homological algebra Inventiones Mathematicae. ,vol. 113, pp. 103- 146 ,(1993) , 10.1007/BF01244304