Entropy production for quasiadiabatic parameter changes dominated by hydrodynamics

作者: Achim Rosch , Philipp S. Weiß , Dennis Hardt

DOI: 10.1103/PHYSREVA.103.033309

关键词:

摘要: A typical strategy of realizing an adiabatic change a many-particle system is to vary parameters very slowly on time scale ${t}_{\text{r}}$ much larger than intrinsic equilibration scales. In the ideal case state preparation, ${t}_{\text{r}}\ensuremath{\rightarrow}\ensuremath{\infty}$, entropy production vanishes. systems with conservation laws, approach limit hampered by hydrodynamic long-time tails, arising from algebraically slow relaxation fluctuations. We argue that $\mathrm{\ensuremath{\Delta}}S$ diffusive at finite temperature in one or two dimensions governed modes resulting $\mathrm{\ensuremath{\Delta}}S\ensuremath{\sim}1/\sqrt{{t}_{\text{r}}}$ $d=1$ and $\mathrm{\ensuremath{\Delta}}S\ensuremath{\sim}ln({t}_{\text{r}})/{t}_{\text{r}}$ $d=2$. higher dimensions, instead dominated other high-energy $\mathrm{\ensuremath{\Delta}}S\ensuremath{\sim}1/{t}_{\text{r}}$. order verify analytic prediction, we simulate nonequilibrium dynamics classical two-component gas pointlike particles spatial dimension examine total as function ${t}_{\text{r}}$.

参考文章(39)
Anatoli Polkovnikov, Vladimir Gritsev, Breakdown of the adiabatic limit in low-dimensional gapless systems Nature Physics. ,vol. 4, pp. 477- 481 ,(2008) , 10.1038/NPHYS963
Christian B. Mendl, Herbert Spohn, Dynamic correlators of Fermi-Pasta-Ulam chains and nonlinear fluctuating hydrodynamics. Physical Review Letters. ,vol. 111, pp. 230601- ,(2013) , 10.1103/PHYSREVLETT.111.230601
B. J. Alder, T. E. Wainwright, Decay of the Velocity Autocorrelation Function Physical Review A. ,vol. 1, pp. 18- 21 ,(1970) , 10.1103/PHYSREVA.1.18
Non-Adiabatic Crossing of Energy Levels Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 137, pp. 696- 702 ,(1932) , 10.1098/RSPA.1932.0165
Michael Lubasch, Valentin Murg, Ulrich Schneider, J. Ignacio Cirac, Mari-Carmen Bañuls, Adiabatic Preparation of a Heisenberg Antiferromagnet Using an Optical Superlattice Physical Review Letters. ,vol. 107, pp. 165301- ,(2011) , 10.1103/PHYSREVLETT.107.165301
Anders S. Sørensen, Ehud Altman, Michael Gullans, J. V. Porto, Mikhail D. Lukin, Eugene Demler, Adiabatic Preparation of Many-Body States in Optical Lattices Physical Review A. ,vol. 81, pp. 061603- ,(2010) , 10.1103/PHYSREVA.81.061603
Jean-Sébastien Bernier, Corinna Kollath, Antoine Georges, Lorenzo De Leo, Fabrice Gerbier, Christophe Salomon, Michael Köhl, Cooling fermionic atoms in optical lattices by shaping the confinement Physical Review A. ,vol. 79, pp. 061601- ,(2009) , 10.1103/PHYSREVA.79.061601
Michael Prähofer, Herbert Spohn, Exact Scaling Functions for One-Dimensional Stationary KPZ Growth Journal of Statistical Physics. ,vol. 115, pp. 255- 279 ,(2004) , 10.1023/B:JOSS.0000019810.21828.FC
Joseph E. Avron, Alexander Elgart, An Adiabatic Theorem without a Gap Condition arXiv: Mathematical Physics. ,(1998) , 10.1007/S002200050620