Discrete fractal fracture mechanics

作者: Michael P. Wnuk , Arash Yavari

DOI: 10.1016/J.ENGFRACMECH.2007.04.020

关键词:

摘要: Abstract A modification of the classical theory brittle fracture solids is offered by relating discrete nature crack propagation to fractal geometry crack. The new model incorporates all previously considered theories processes, in particular Griffith [Griffith AA. phenomenon rupture and flow solids. Philos Trans Roy Soc Lond 1921;A221:163–398] theory, its contemporary extension known as LEFM most recently developed Quantized Fracture Mechanics (QFM) Pugno Ruoff [Pugno N, RS. mechanics. Mag 2004;84(27):2829–45]. Using an equivalent smooth blunt for a given crack, we find that assuming radius curvature material property, roughens while propagating. In other words, dimension at tip monotonically increasing function nominal length, i.e., presence Mirror–Mist–Hackle analytically demonstrated.

参考文章(61)
Arash Yavari, Kevin G. Hockett, Shahram Sarkani, The fourth mode of fracture in fractal fracture mechanics International Journal of Fracture. ,vol. 101, pp. 365- 384 ,(2000) , 10.1023/A:1007650510881
Xie Heping, The fractal effect of irregularity of crack branching on the fracture toughness of brittle materials International Journal of Fracture. ,vol. 41, pp. 267- 274 ,(1989) , 10.1007/BF00018858
A. B. Mosolov, R. V. Gol'dshtein, E. Lepa, CRACKS WITH A FRACTAL SURFACE Soviet physics. Doklady. ,vol. 36, pp. 603- 605 ,(1991)
E. Orowan, ENERGY CRITERIA OF FRACTURE ,(1954)
K. B. Broberg, Cracks and Fracture ,(1999)
G.I. Barenblatt, THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE Advances in Applied Mechanics. ,vol. 7, pp. 55- 129 ,(1962) , 10.1016/S0065-2156(08)70121-2
J. D. Eshelby, Energy Relations and the Energy-Momentum Tensor in Continuum Mechanics Fundamental Contributions to the Continuum Theory of Evolving Phase Interfaces in Solids. pp. 82- 119 ,(1999) , 10.1007/978-3-642-59938-5_5