Tikhonov regularization and the L-curve for large discrete ill-posed problems

作者: D. Calvetti , S. Morigi , L. Reichel , F. Sgallari

DOI: 10.1016/S0377-0427(00)00414-3

关键词:

摘要: … of Tikhonov regularization that allows an interchange of the role of the vectors u j and υ j with the purpose of reducing the storage requirement. Specifically, in this variant of Tikhonov …

参考文章(23)
D. Calvetti, G. H. Golub, L. Reichel, Estimation of the L-Curve via Lanczos Bidiagonalization Bit Numerical Mathematics. ,vol. 39, pp. 603- 619 ,(1999) , 10.1023/A:1022383005969
Per Christian Hansen, Dianne Prost O’Leary, The use of the L-curve in the regularization of discrete ill-posed problems SIAM Journal on Scientific Computing. ,vol. 14, pp. 1487- 1503 ,(1993) , 10.1137/0914086
Martin Hanke, Limitations of the L-curve method in ill-posed problems Bit Numerical Mathematics. ,vol. 36, pp. 287- 301 ,(1996) , 10.1007/BF01731984
Walter Gander, Least squares with a quadratic constraint Numerische Mathematik. ,vol. 36, pp. 291- 307 ,(1980) , 10.1007/BF01396656
Åke Björck, Eric Grimme, Paul Van Dooren, An implicit shift bidiagonalization algorithm for ill-posed problems Bit Numerical Mathematics. ,vol. 34, pp. 510- 534 ,(1994) , 10.1007/BF01934265