A Fictitious-Domain Method with Distributed Multiplier for the Stokes Problem

作者: Vivette Girault , Roland Glowinski , T. W. Pan

DOI: 10.1007/0-306-47096-9_12

关键词:

摘要: This article is devoted to the numerical analysis of a fictitious domain method for Stokes problem, where boundary condition enforced weakly by means multiplier defined in portion domain. In practice, this applied example sedimentation many particles fluid. It found that divergence-free. We present here sufficient conditions on relative mesh sizes convergence discrete method. Also, we show how constraint divergence can be relaxed when such problem discretized.

参考文章(13)
Michael Vogelius, Douglas N. Arnold, L. Ridgway Scott, Regular Inversion of the Divergence Operator with Dirichlet Boundary Conditions on a Polygon. Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze. ,vol. 15, pp. 169- 192 ,(1987)
L. Ridgway Scott, Susanne C Brenner, The Mathematical Theory of Finite Element Methods ,(2007)
Jean Roberts, Jean-Marie Thomas, Mixed and hybrid finite element methods Springer-Verlag. ,(1991) , 10.1007/978-1-4612-3172-1
R. Glowinski, T.W. Pan, J. Périaux, Distributed Lagrange multiplier methods for incompressible viscous flow around moving rigid bodies Computer Methods in Applied Mechanics and Engineering. ,vol. 151, pp. 181- 194 ,(1998) , 10.1016/S0045-7825(97)00116-3
C. Bernardi, V. Girault, A Local Regularization Operator for Triangular and Quadrilateral Finite Elements SIAM Journal on Numerical Analysis. ,vol. 35, pp. 1893- 1916 ,(1998) , 10.1137/S0036142995293766
L. Ridgway Scott, Shangyou Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions Mathematics of Computation. ,vol. 54, pp. 483- 493 ,(1990) , 10.1090/S0025-5718-1990-1011446-7