The equivariant A-twist and gauged linear sigma models on the two-sphere

作者: Stefano Cremonesi , Daniel S. Park , Cyril Closset

DOI: 10.1007/JHEP06(2015)076

关键词:

摘要: We study two-dimensional $$ \mathcal{N}=\left(2,\;2\right) $$ supersymmetric gauged linear sigma models (GLSM) on the Ω-deformed sphere, S 2 , which is a one-parameter deformation of A-twisted sphere. provide an exact formula for correlation functions using localization. The contribution each instanton sector given in terms Jeffrey-Kirwan residue Coulomb branch. In limit vanishing Ω-deformation, localization greatly simplifies computation functions, and leads to new results non-abelian theories. discuss number examples comment ϵ Ω-deformation quantum cohomology relations. Finally, we present complementary Higgs branch scheme special case abelian gauge groups.

参考文章(83)
E. Rabinovici, D. S. Berman, E. Rabinovici, Supersymmetric Gauge Theories Lectures given at. pp. 137- 240 ,(2002) , 10.1007/3-540-36245-2_2
Masazumi Honda, Yutaka Yoshida, Supersymmetric index on T^2 x S^2 and elliptic genus arXiv: High Energy Physics - Theory. ,(2015)
Sergio Cecotti, Cumrun Vafa, None, Topological-anti-topological fusion Nuclear Physics. ,vol. 367, pp. 359- 461 ,(1991) , 10.1016/0550-3213(91)90021-O
Edward Witten, The Verlinde algebra and the cohomology of the Grassmannian arXiv: High Energy Physics - Theory. ,(1993)
Einar Andreas Rødland, The Pfaffian Calabi-Yau, its Mirror, and their link to the Grassmannian G(2,7) Compositio Mathematica. ,vol. 122, pp. 135- 149 ,(2000) , 10.1023/A:1001847914402
Sara Pasquetti, Factorisation of N = 2 Theories on the Squashed 3-Sphere Journal of High Energy Physics. ,vol. 2012, pp. 120- ,(2012) , 10.1007/JHEP04(2012)120
Edward Witten, Mirror Manifolds And Topological Field Theory AMS/IP Stud.Adv.Math.. ,vol. 9, pp. 121- 160 ,(1991)
Tony Pantev, Eric Sharpe, Notes on gauging noneffective group actions arXiv: High Energy Physics - Theory. ,(2005)
S. Hosono, A. Klemm, S. Theisen, Lectures on mirror symmetry Lecture Notes in Physics. ,vol. 436, pp. 235- 280 ,(1994) , 10.1007/3-540-58453-6_13
Nikita A. Nekrasov, Andrei Okounkov, Seiberg-Witten Theory and Random Partitions Progress in Mathematics. ,vol. 244, pp. 525- 596 ,(2003) , 10.1007/0-8176-4467-9_15