Bandwidth of the product of paths of the same length

作者: Louis J. Billera , Saúl A. Blanco

DOI: 10.1016/J.DAM.2013.05.038

关键词:

摘要: In this note we give a numerical expression for the bandwidth bw(P"n^d) of d-product path with n edges, P"n^d. We prove that is given by sum certain multinomial coefficients. also show bounded above and below largest coefficient in expansion (1+x+...+x^n)^k, k@?{d,d+1}. Moreover, compare asymptotic behavior labeling obtained ordering vertices P"n^d lexicographic order.

参考文章(12)
L’ubomír Török, Imrich Vrt’o, Antibandwidth of d-Dimensional Meshes Lecture Notes in Computer Science. ,vol. 5874, pp. 471- 477 ,(2009) , 10.1007/978-3-642-10217-2_46
Laszlo Szalay, Hacene Belbachir, Algiers Algeria, Unimodal Rays in the Ordinary and Generalized Pascal Triangles JIntS. ,vol. 11, pp. 24- ,(2008)
Xiaohan Wang, Xiaolin Wu, Sorina Dumitrescu, On explicit formulas for bandwidth and antibandwidth of hypercubes Discrete Applied Mathematics. ,vol. 157, pp. 1947- 1952 ,(2009) , 10.1016/J.DAM.2008.12.004
Jarmila Chvátalová, Optimal labelling of a product of two paths Discrete Mathematics. ,vol. 11, pp. 249- 253 ,(1975) , 10.1016/0012-365X(75)90039-4
József Balogh, Clifford Smyth, On the variance of Shannon products of graphs Discrete Applied Mathematics. ,vol. 156, pp. 110- 118 ,(2008) , 10.1016/J.DAM.2007.09.008
Richard C. Bollinger, Extended Pascal Triangles Mathematics Magazine. ,vol. 66, pp. 87- 94 ,(1993) , 10.1080/0025570X.1993.11996088
L.H. Harper, Optimal numberings and isoperimetric problems on graphs Journal of Combinatorial Theory, Series A. ,vol. 1, pp. 385- 393 ,(1966) , 10.1016/S0021-9800(66)80059-5
Edward A Bender, Central and local limit theorems applied to asymptotic enumeration Journal of Combinatorial Theory, Series A. ,vol. 15, pp. 91- 111 ,(1973) , 10.1016/0097-3165(73)90038-1