The Second Order Upper Bound for the Ground Energy of a Bose Gas

作者: Horng-Tzer Yau , Jun Yin

DOI: 10.1007/S10955-009-9792-3

关键词:

摘要: Consider N bosons in a finite box Λ=[0,L]3⊂R 3 interacting via two-body smooth repulsive short range potential. We construct variational state which gives the following upper bound on ground energy per particle $$\overline{\lim}_{\rho\to0}\overline{\lim}_{L\to\infty,\,N/L^3\to \rho}\biggl(\frac{e_0(\rho)-4\pi a\rho}{(4\pi a)^{5/2}(\rho)^{3/2}}\biggr )\leq\frac{16}{15\pi^2},$$ where is scattering length of Previously, an form C16/15π 2 for some constant C>1 was obtained (Erdos et al. Phys. Rev. A 78:053627, 2008). Our result proves prediction by Lee and Yang (Phys. 105(3):1119–1120, 1957) 106(6):1135–1145, 1957).

参考文章(18)
Richard David Etters, Theory of many-boson systems Ph.D. Thesis. ,(1965) , 10.31274/RTD-180813-1599
F. J. Dyson, Ground-State Energy of a Hard-Sphere Gas Physical Review. ,vol. 106, pp. 20- 26 ,(1957) , 10.1103/PHYSREV.106.20
M. Girardeau, R. Arnowitt, THEORY OF MANY-BOSON SYSTEMS: PAIR THEORY Physical Review. ,vol. 113, pp. 755- 761 ,(1959) , 10.1103/PHYSREV.113.755
L. D. Landau, J. S. Bell, J. B. Sykes, E. M. Lifshitz, M. E. Rose, Quantum mechanics: Non-relativistic theory, ,(1965)
Elliott H. Lieb, Simplified Approach to the Ground-State Energy of an Imperfect Bose Gas Physical Review. ,vol. 130, pp. 325- 335 ,(1963) , 10.1103/PHYSREV.130.2518
Elliott H. Lieb, Jan Philip Solovej, Ground State Energy of the One-Component Charged Bose Gas Communications in Mathematical Physics. ,vol. 217, pp. 127- 163 ,(2001) , 10.1007/S002200000353
László Erdős, Benjamin Schlein, Horng-Tzer Yau, None, Ground-state energy of a low-density Bose gas: A second-order upper bound Physical Review A. ,vol. 78, pp. 053627- ,(2008) , 10.1103/PHYSREVA.78.053627
Elliolt H. Lieb, Jakob Yngvason, Ground State Energy of the Low Density Bose Gas Physical Review Letters. ,vol. 80, pp. 2504- 2507 ,(1998) , 10.1007/3-540-27056-6_46
T. D. Lee, C. N. Yang, Many-Body Problem in Quantum Mechanics and Quantum Statistical Mechanics Physical Review. ,vol. 105, pp. 1119- 1120 ,(1957) , 10.1103/PHYSREV.105.1119
Kerson Huang, C. N. Yang, Quantum-Mechanical Many-Body Problem with Hard-Sphere Interaction Physical Review. ,vol. 105, pp. 767- 775 ,(1957) , 10.1103/PHYSREV.105.767