Global Mittag–Leffler projective synchronization of nonidentical fractional-order neural networks with delay via sliding mode control

作者: Jiyang Chen , Chuandong Li , Xujun Yang

DOI: 10.1016/J.NEUCOM.2018.06.029

关键词:

摘要: … for nonidentical delayed fractional-order neural networks based on the technique of … sliding mode control is addressed in this paper. Firstly, a delayed fractional-order integral sliding …

参考文章(49)
E. Soczkiewicz, Application of Fractional Calculus in the Theory of Viscoelasticity Molecular and Quantum Acoustics. ,vol. 23, pp. 397- 404 ,(2002)
Jean-Jacques E. Slotine, Weiping Li, Applied Nonlinear Control ,(1991)
Jianping Yan, Changpin Li, On chaos synchronization of fractional differential equations Chaos, Solitons & Fractals. ,vol. 32, pp. 725- 735 ,(2007) , 10.1016/J.CHAOS.2005.11.062
Tsung-Chih Lin, Tun-Yuan Lee, Valentina E. Balas, Adaptive fuzzy sliding mode control for synchronization of uncertain fractional order chaotic systems Chaos, Solitons & Fractals. ,vol. 44, pp. 791- 801 ,(2011) , 10.1016/J.CHAOS.2011.04.005
Tingwen Huang, Chuandong Li, Shukai Duan, J. A. Starzyk, Robust Exponential Stability of Uncertain Delayed Neural Networks With Stochastic Perturbation and Impulse Effects IEEE Transactions on Neural Networks. ,vol. 23, pp. 866- 875 ,(2012) , 10.1109/TNNLS.2012.2192135
Louis M. Pecora, Thomas L. Carroll, Synchronization in chaotic systems Physical Review Letters. ,vol. 64, pp. 821- 824 ,(1990) , 10.1103/PHYSREVLETT.64.821
Juan Yu, Cheng Hu, Haijun Jiang, α -stability and α -synchronization for fractional-order neural networks Neural Networks. ,vol. 35, pp. 82- 87 ,(2012) , 10.1016/J.NEUNET.2012.07.009
HAO ZHU, ZHONGSHI HE, SHANGBO ZHOU, LAG SYNCHRONIZATION OF THE FRACTIONAL-ORDER SYSTEM VIA NONLINEAR OBSERVER International Journal of Modern Physics B. ,vol. 25, pp. 3951- 3964 ,(2011) , 10.1142/S0217979211102253