On the nonexistence of purely Stepanov almost-periodic solutions of ordinary differential equations

作者: Jan Andres , Denis Pennequin

DOI: 10.1090/S0002-9939-2012-11154-2

关键词:

摘要: It is shown that in uniformly convex Banach spaces, Stepanov almost-periodic functions with derivatives are the sense of Bohr. This natural situations yields, jointly derived properties associated Nemytskii operators, nonexistence purely (i.e.nonuniformly continuous) solutions ordinary differential equations. In particular, existence problem such solutions, considered a series five papers Z. Hu and A. B. Mingarelli, answered negative way.

参考文章(12)
Jan Andres, Alberto M. Bersani, Almost-periodicity problem as a fixed-point problem for evolution inclusions Topological Methods in Nonlinear Analysis. ,vol. 18, pp. 337- 349 ,(2001) , 10.12775/TMNA.2001.038
Sophia Th. Kyritsi-Yiallourou, Nikolaos S. Papageorgiou, Handbook of Applied Analysis ,(2009)
Zuosheng Hu, Angelo B. Mingarelli, On a theorem of Favard Proceedings of the American Mathematical Society. ,vol. 132, pp. 417- 428 ,(2003) , 10.1090/S0002-9939-03-07166-1
C. Corduneanu, N. Gheorghiu, Almost periodic functions ,(1968)
Norbert Wiener, A. S. Besicovitch, Almost periodic functions The Mathematical Gazette. ,vol. 16, pp. 275- ,(1932) , 10.2307/3605933
Massimo Tarallo, A Stepanov version for Favard theory Archiv der Mathematik. ,vol. 90, pp. 53- 59 ,(2008) , 10.1007/S00013-007-2435-5
Zuosheng Hu, Angelo B. Mingarelli, Bochner’s theorem and Stepanov almost periodic functions Annali di Matematica Pura ed Applicata. ,vol. 187, pp. 719- 736 ,(2008) , 10.1007/S10231-008-0066-5
Aribindi Satyanarayan Rao, On differential operators with Bohr-Neugebauer type property Journal of Differential Equations. ,vol. 13, pp. 490- 494 ,(1973) , 10.1016/0022-0396(73)90007-7