A note on the dimension of the global attractor for an abstract semilinear hyperbolic problem

作者: Miroslav Bulíček , Dalibor Pražák

DOI: 10.1016/J.AML.2009.01.027

关键词:

摘要: We study a semilinear hyperbolic problem, written as second-order evolution equation in an infinite-dimensional Hilbert space. Assuming existence of the global attractor, we estimate its fractal dimension explicitly terms data. Despite elementary character, our technique gives reasonable results. Notably, require no additional regularity, although nonlinear damping is allowed.

参考文章(13)
David E Edmunds, W D Evans, Spectral theory and differential operators ,(1995)
Francesca Bucci, , Igor Chueshov, Irena Lasiecka, , , Global attractor for a composite system of nonlinear wave and plate equations Communications on Pure and Applied Analysis. ,vol. 6, pp. 113- 140 ,(2006) , 10.3934/CPAA.2007.6.113
Messoud Efendiev, Alain Miranville, Sergey Zelik, Exponential attractors for a nonlinear reaction-diffusion system in ? Comptes Rendus De L Academie Des Sciences Serie I-mathematique. ,vol. 330, pp. 713- 718 ,(2000) , 10.1016/S0764-4442(00)00259-7
E. Feireisl, Global Attractors for Semilinear Damped Wave Equations with Supercritical Exponent Journal of Differential Equations. ,vol. 116, pp. 431- 447 ,(1995) , 10.1006/JDEQ.1995.1042
Vittorino Pata, Sergey Zelik, Global and exponential attractors for 3‐D wave equations with displacement dependent damping Mathematical Methods in The Applied Sciences. ,vol. 29, pp. 1291- 1306 ,(2006) , 10.1002/MMA.726
Igor Chueshov, Irena Lasiecka, Attractors for Second-Order Evolution Equations with a Nonlinear Damping Journal of Dynamics and Differential Equations. ,vol. 16, pp. 469- 512 ,(2004) , 10.1007/S10884-004-4289-X
Josef Málek, Jindřich Nečas, A Finite-Dimensional Attractor for Three-Dimensional Flow of Incompressible Fluids Journal of Differential Equations. ,vol. 127, pp. 498- 518 ,(1996) , 10.1006/JDEQ.1996.0080
Josef Málek, Dalibor Pražák, Large Time Behavior via the Method of ℓ-Trajectories Journal of Differential Equations. ,vol. 181, pp. 243- 279 ,(2002) , 10.1006/JDEQ.2001.4087