Spatio-spectral & temporal parameter searching using class correlation analysis and particle swarm optimization for a brain computer interface

作者: Abdul R Satti , Damien Coyle , Girijesh Prasad

DOI: 10.1109/ICSMC.2009.5346679

关键词:

摘要: Distinct features play a vital role in enabling computer to associate different electroencephalogram (EEG) signals brain states. To ease the workload on feature extractor and enhance separability between states, numerous parameters, such as separable frequency bands, data acquisition channels time point of maximum are chosen explicit each subject. Recent research has shown that using subject specific parameters for extraction invariant characteristics state can significantly improve performance accuracy brain-computer interface (BCI). This paper focuses developing fast autonomous user-specific tuned BCI system Particle Swarm Optimization (PSO) search optimal parameter combination based analysis correlation classes i.e., R-Squared (R2) coefficient rather than assessing overall systems via measure classification accuracy. Experimental results utilizing eight subjects presented which demonstrate effectiveness proposed methods & efficient system.

参考文章(13)
G Prasad, A Satti, DH Coyle, Optimal frequency band selection with particle swarm optimization for a brain computer interface the IEEE Computational Intelligence Society Workshop and Summer School in Evolutionary Computation. pp. 72- 75 ,(2008)
Stephen M. Kosslyn, Giorgio Ganis, William L. Thompson, Neural foundations of imagery. Nature Reviews Neuroscience. ,vol. 2, pp. 635- 642 ,(2001) , 10.1038/35090055
Karen P. Liu, Chetwyn C. Chan, Tatia M. Lee, Christina W. Hui-Chan, Mental Imagery for Promoting Relearning for People After Stroke: A Randomized Controlled Trial Archives of Physical Medicine and Rehabilitation. ,vol. 85, pp. 1403- 1408 ,(2004) , 10.1016/J.APMR.2003.12.035
Mingyuan Zhao, Mingtian Zhou, Qingxin Zhu, Ping Yang, Feature Extraction and Parameters Selection of Classification Model on Brain-Computer Interface bioinformatics and bioengineering. pp. 1249- 1253 ,(2007) , 10.1109/BIBE.2007.4375725
Jonathan R Wolpaw, Niels Birbaumer, Dennis J McFarland, Gert Pfurtscheller, Theresa M Vaughan, Brain-computer interfaces for communication and control. Clinical Neurophysiology. ,vol. 113, pp. 767- 791 ,(2002) , 10.1016/S1388-2457(02)00057-3
Damien Coyle, Girijesh Prasad, T. M. McGinnity, A Time-Frequency Approach to Feature Extraction for a Brain-Computer Interface with a Comparative Analysis of Performance Measures EURASIP Journal on Advances in Signal Processing. ,vol. 2005, pp. 3141- 3151 ,(2005) , 10.1155/ASP.2005.3141
Tian Lan, D. Erdogmus, A. Adami, M. Pavel, S. Mathan, Salient EEG Channel Selection in Brain Computer Interfaces by Mutual Information Maximization international conference of the ieee engineering in medicine and biology society. ,vol. 7, pp. 7064- 7067 ,(2005) , 10.1109/IEMBS.2005.1616133
S. G. Mason, A. Bashashati, M. Fatourechi, K. F. Navarro, G. E. Birch, A Comprehensive Survey of Brain Interface Technology Designs Annals of Biomedical Engineering. ,vol. 35, pp. 137- 169 ,(2007) , 10.1007/S10439-006-9170-0
Benjamin Blankertz, Guido Dornhege, Matthias Krauledat, Klaus-Robert Müller, Gabriel Curio, The non-invasive Berlin Brain-Computer Interface: fast acquisition of effective performance in untrained subjects. NeuroImage. ,vol. 37, pp. 539- 550 ,(2007) , 10.1016/J.NEUROIMAGE.2007.01.051
C. Guger, H. Ramoser, G. Pfurtscheller, Real-time EEG analysis with subject-specific spatial patterns for a brain-computer interface (BCI) international conference of the ieee engineering in medicine and biology society. ,vol. 8, pp. 447- 456 ,(2000) , 10.1109/86.895947