Adaptive mesh refinement in the finite element computation of magnetic fields

作者: Z. Cendes , D. Shenton

DOI: 10.1109/TMAG.1985.1063929

关键词:

摘要: Adaptive mesh refinement has the potential of making finite element computation magnetic field problems completely automatic. In adaptive procedures, problem is solved iteratively, beginning with a coarse and refining it in locations greatest error. Methods for triangular grids are surveyed use local error estimates process described. It concluded that Delaunay triangulation provides best method refinement, while complementary variational principles provide accurate bounds on solution.

参考文章(27)
R. E. Bank, A. H. Sherman, An adaptive, multi-level method for elliptic boundary value problems Computing. ,vol. 26, pp. 91- 105 ,(1981) , 10.1007/BF02241777
L.B Rall, On complementary variational principles Journal of Mathematical Analysis and Applications. ,vol. 14, pp. 174- 184 ,(1966) , 10.1016/0022-247X(66)90018-7
I. Babuvška, W. C. Rheinboldt, Error Estimates for Adaptive Finite Element Computations SIAM Journal on Numerical Analysis. ,vol. 15, pp. 736- 754 ,(1978) , 10.1137/0715049
D. Lindholm, Automatic triangular mesh generation on surfaces of polyhedra IEEE Transactions on Magnetics. ,vol. 19, pp. 2539- 2542 ,(1983) , 10.1109/TMAG.1983.1062893
Z. Cendes, D. Shenton, H. Shahnasser, Magnetic field computation using Delaunay triangulation and complementary finite element methods IEEE Transactions on Magnetics. ,vol. 19, pp. 2551- 2554 ,(1983) , 10.1109/TMAG.1983.1062841
R. Sibson, Locally equiangular triangulations The Computer Journal. ,vol. 21, pp. 243- 245 ,(1978) , 10.1093/COMJNL/21.3.243
R. E. Bank, A. Weiser, Some a posteriori error estimators for elliptic partial differential equations Mathematics of Computation. ,vol. 44, pp. 283- 301 ,(1985) , 10.1090/S0025-5718-1985-0777265-X
Mark Yerry, Mark Shephard, A Modified Quadtree Approach To Finite Element Mesh Generation IEEE Computer Graphics and Applications. ,vol. 3, pp. 39- 46 ,(1983) , 10.1109/MCG.1983.262997
D. T. Lee, B. J. Schachter, Two algorithms for constructing a Delaunay triangulation International Journal of Parallel Programming. ,vol. 9, pp. 219- 242 ,(1980) , 10.1007/BF00977785
J.R. Fraser, J. Penman, Unified approach to problems in electromagnetism IEE Proceedings A Physical Science, Measurement and Instrumentation, Management and Education, Reviews. ,vol. 131, pp. 55- 61 ,(1984) , 10.1049/IP-A-1:19840007