Non-periodic tilings in 2-dimensions with 4,6,8,10 and 12-fold symmetries

作者: V Sasisekharan , S Baranidharan , V S K Balagurusamy , A Srinivasan , E S R Gopal

DOI: 10.1007/BF02845832

关键词:

摘要: The two dimensional plane can be filled with rhombuses, so as to generate non-periodic tilings 4, 6, 8, 10 and 12-fold symmetries. Some representative constructed using the rule of inflation are shown. numerically computed diffraction patterns for corresponding also shown facilitate a comparison possible X-ray or electron pictures.

参考文章(12)
P J Steinhardt, S Ostlund, The physics of quasicrystals World Scientific. ,(1987) , 10.1142/0391
Dov Levine, Paul Joseph Steinhardt, Quasicrystals: a new class of ordered structures Physical Review Letters. ,vol. 53, pp. 2477- 2480 ,(1984) , 10.1103/PHYSREVLETT.53.2477
Solomon W. Golomb, Branko Grunbaum, G. C. Shephard, Tilings and patterns American Mathematical Monthly. ,vol. 95, pp. 63- ,(1986) , 10.2307/2323457
D. Shechtman, I. Blech, D. Gratias, J. W. Cahn, Metallic Phase with Long-Range Orientational Order and No Translational Symmetry Physical Review Letters. ,vol. 53, pp. 1951- 1953 ,(1984) , 10.1103/PHYSREVLETT.53.1951
Dov Levine, Paul J. Steinhardt, Quasicrystals. I. Definition and structure Physical Review B. ,vol. 34, pp. 596- 616 ,(1986) , 10.1103/PHYSREVB.34.596
R. Penrose, Pentaplexity A Class of Non-Periodic Tilings of the Plane The Mathematical Intelligencer. ,vol. 2, pp. 32- 37 ,(1979) , 10.1007/BF03024384
Alan L. Mackay, Crystallography and the penrose pattern Physica A: Statistical Mechanics and its Applications. ,vol. 114, pp. 609- 613 ,(1982) , 10.1016/0378-4371(82)90359-4
L. MICHEL, SOME REFLEXIONS AND QUESTIONS ABOUT APERIODIC CRYSTALS Le Journal De Physique Colloques. ,vol. 47, ,(1986) , 10.1051/JPHYSCOL:1986351
N. Wang, H. Chen, K. H. Kuo, Two-dimensional quasicrystal with eightfold rotational symmetry Physical Review Letters. ,vol. 59, pp. 1010- 1013 ,(1987) , 10.1103/PHYSREVLETT.59.1010