High Temperature Creep Properties of Al-Al4C3-Al2O3 Alloy by Mechanical Alloying

作者: Chang-Suk Han , , Han-Byeol Seo

DOI: 10.3740/MRSK.2016.26.7.370

关键词:

摘要: Tensile tests and creep were carried out at high temperatures on an Al-Al4C3 alloy prepared by mechanical alloying technique. The material contains about 2.0 % carbon 0.9 oxygen in mass percent, the volume fractions of Al4C3 Al2O3 particles are estimated 7.4 1.4 %, respectively, from chemical composition. Minimum rate decreased steeply near two critical stresses, σcl (the lower stress) σcu upper stress), with decreasing applied stress below 723 K. Instantaneous plastic strain was observed above a stress, σci, each test temperature. σci fairly close to 0.2% proof obtained tensile It is thought that correspond microscopic yield macroscopic respectively. corresponds local needed for dislocations move soft region within subgrains. low range K arises mainly deformation region. equivalent necessary subgrains or subboundaries; this can extensively beyond subboundaries under point deformation. At higher 773 K, influence diffusional increases exponent decreases.

参考文章(10)
R. W. Evans, B. Wilshire, Creep behaviour of superalloy blade materials Materials Science and Technology. ,vol. 3, pp. 701- 705 ,(1987) , 10.1179/MST.1987.3.9.701
D. Gould, P. B. Hirsch, F. J. Humphreys, The Bauschinger effect, work-hardening and recovery in dispersion-hardened copper crystals Philosophical Magazine. ,vol. 30, pp. 1353- 1377 ,(1974) , 10.1080/14786437408207287
T. Sakamoto, H. Kurishita, T. Furuno, T. Nagasaka, S. Kobayashi, K. Nakai, S. Matsuo, H. Arakawa, A. Nishimura, T. Muroga, Uniaxial creep behavior of nanostructured, solution and dispersion hardened V–1.4Y–7W–9Mo–0.7TiC with different grain sizes Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 528, pp. 7843- 7850 ,(2011) , 10.1016/J.MSEA.2011.06.033
Ferdinand Dobeš, Michal Besterci, Beáta Ballóková, Katarína Sűlleiová, Petr Dymáček, Analysis of creep fracture in Al–Al4C3 composite after ECAP Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 532, pp. 567- 572 ,(2012) , 10.1016/J.MSEA.2011.10.122
J. Rösler, E. Arzt, A new model-based creep equation for dispersion strengthened materials Acta Metallurgica et Materialia. ,vol. 38, pp. 671- 683 ,(1990) , 10.1016/0956-7151(90)90223-4
H. Dutta, A. Sen, J. Bhattacharjee, S.K. Pradhan, Preparation of ternary Ti0.9Ni0.1C cermets by mechanical alloying: Microstructure characterization by Rietveld method and electron microscopy Journal of Alloys and Compounds. ,vol. 493, pp. 666- 671 ,(2010) , 10.1016/J.JALLCOM.2009.12.184
Shigehiro Kawamori, Terufumi Machida, Microstructure and Mechanical Properties of Alumina-Dispersed Magnesium Fabricated Using Mechanical Alloying Method Materials Transactions. ,vol. 48, pp. 373- 379 ,(2007) , 10.2320/MATERTRANS.48.373
K. Higashi, T. Okada, T. Mukai, S. Tanimura, Very high strain rate superplasticity in a mechanically alloyed IN9052 aluminum alloy Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 159, ,(1992) , 10.1016/0921-5093(92)90407-R