Carbonyl-based blue autofluorescence of proteins and amino acids

作者: Chamani Niyangoda , Tatiana Miti , Leonid Breydo , Vladimir Uversky , Martin Muschol

DOI: 10.1371/JOURNAL.PONE.0176983

关键词:

摘要: Intrinsic protein fluorescence is inextricably linked to the near-UV autofluorescence of aromatic amino acids. Here we show that a novel deep-blue (dbAF), previously thought emerge as result aggregation, present at level monomeric proteins and even poly- single Just its aggregation-related counterpart, this does not depend on residues, can be excited long wavelength edge UV emits in deep blue. Differences dbAF excitation emission peaks intensities from acids upon changes solution conditions suggest dbAF's sensitivity both chemical identity environment Autofluorescence comparable emitted by carbonyl-containing organic solvents, but those lacking carbonyl group. This implicates double bonds likely source for all these compounds. Using beta-lactoglobulin proline, have measured molar extinction coefficients quantum yields state. To establish potential utility monitoring biophysics, undergoes red-shift magnitude tryptophan thermal denaturation lysozyme, it sensitive quenching acrylamide. Carbonyl therefore provides neglected intrinsic optical probe investigating structure dynamics acids, and, extension, DNA RNA.

参考文章(30)
Markus Sauer, Johan Hofkens, Jörg Enderlein, Handbook of Fluorescence Spectroscopy and Imaging Wiley-VCH Verlag GmbH & Co. KGaA. ,(2011) , 10.1002/9783527633500
Daniel Stehli, Mentor Mulaj, Tatiana Miti, Joshua Traina, Joseph Foley, Martin Muschol, Collapsed state of polyglutamic acid results in amyloid spherulite formation Intrinsically Disordered Proteins. ,vol. 3, pp. 1- 12 ,(2015) , 10.1080/21690707.2015.1056905
F. W. J. Teale, The ultraviolet fluorescence of proteins in neutral solution Biochemical Journal. ,vol. 76, pp. 381- 388 ,(1960) , 10.1042/BJ0760381
Sara M. Sizemore, Stephanie M. Cope, Anindya Roy, Giovanna Ghirlanda, Sara M. Vaiana, Slow Internal Dynamics and Charge Expansion in the Disordered Protein CGRP: A Comparison with Amylin Biophysical Journal. ,vol. 109, pp. 1038- 1048 ,(2015) , 10.1016/J.BPJ.2015.07.023
Joseph Foley, Shannon E. Hill, Tatiana Miti, Mentor Mulaj, Marissa Ciesla, Rhonda Robeel, Christopher Persichilli, Rachel Raynes, Sandy Westerheide, Martin Muschol, Structural fingerprints and their evolution during oligomeric vs. oligomer-free amyloid fibril growth. Journal of Chemical Physics. ,vol. 139, pp. 121901- 121901 ,(2013) , 10.1063/1.4811343
L. L. del Mercato, P. P. Pompa, G. Maruccio, A. D. Torre, S. Sabella, A. M. Tamburro, R. Cingolani, R. Rinaldi, Charge transport and intrinsic fluorescence in amyloid-like fibrils Proceedings of the National Academy of Sciences of the United States of America. ,vol. 104, pp. 18019- 18024 ,(2007) , 10.1073/PNAS.0702843104
Paul Doty, A. Wada, Jen Tsi Yang, E. R. Blout, Polypeptides. VIII. Molecular configurations of poly-L-glutamic acid in water-dioxane solution Journal of Polymer Science. ,vol. 23, pp. 851- 861 ,(1957) , 10.1002/POL.1957.1202310429
Fiona T. S. Chan, Gabriele S. Kaminski Schierle, Janet R. Kumita, Carlos W. Bertoncini, Christopher M. Dobson, Clemens F. Kaminski, Protein amyloids develop an intrinsic fluorescence signature during aggregation Analyst. ,vol. 138, pp. 2156- 2162 ,(2013) , 10.1039/C3AN36798C
Shannon E. Hill, Tatiana Miti, Tyson Richmond, Martin Muschol, Spatial Extent of Charge Repulsion Regulates Assembly Pathways for Lysozyme Amyloid Fibrils PLoS ONE. ,vol. 6, pp. e18171- ,(2011) , 10.1371/JOURNAL.PONE.0018171