Wave Localization Characteristics in the Time Domain

作者: Benjamin White , Ping Sheng , Zhao Qing Zhang , George Papanicolaou

DOI: 10.1103/PHYSREVLETT.59.1918

关键词:

摘要: We present an analytical solution to the problem of pulse backscattering from a randomly stratified half-space. It is shown that power spectrum \ensuremath{\mu} for backscattered wave characterized by function \ensuremath{\chi}, where \ensuremath{\chi}=(distance traveled at time \ensuremath{\tau})/(the frequency-dependent localization length). For matched-impedance and total-reflection boundary conditions, given \ensuremath{\chi}/(1+\ensuremath{\chi}${)}^{2}$ 4\ensuremath{\chi}, respectively. Implications time-domain measurement length are discussed.

参考文章(4)
Ping Sheng, Zhao-Qing Zhang, Benjamin White, George Papanicolaou, Multiple scattering noise in one dimension: Universality through localization length scaling. Physical Review Letters. ,vol. 57, pp. 1000- 1003 ,(1986) , 10.1103/PHYSREVLETT.57.1000
R. Burridge, G. Papanicolaou, B. White, Statistics for pulse reflection from a randomly layered medium Siam Journal on Applied Mathematics. ,vol. 47, pp. 146- 168 ,(1987) , 10.1137/0147009
R. Z. Khas’minskii, A Limit Theorem for the Solutions of Differential Equations with Random Right-Hand Sides Theory of Probability & Its Applications. ,vol. 11, pp. 390- 406 ,(1966) , 10.1137/1111038
Ping Sheng, Benjamin White, Zhao-Qing Zhang, George Papanicolaou, Minimum wave-localization length in a one-dimensional random medium. Physical Review B. ,vol. 34, pp. 4757- 4761 ,(1986) , 10.1103/PHYSREVB.34.4757