A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems

作者: H.G. Sun , W. Chen , H. Wei , Y.Q. Chen

DOI: 10.1140/EPJST/E2011-01390-6

关键词:

摘要: … variable-order fractional derivative is good at depicting the … There are mainly two types of variableorder fractional … as variable-order derivative type 1 (V1) and variable-order derivative …

参考文章(38)
Changpin Li, Weigang Sun, Synchronization Analysis of Two Networks New Trends in Nanotechnology and Fractional Calculus Applications. pp. 243- 253 ,(2010) , 10.1007/978-90-481-3293-5_20
Carl F. Lorenzo, Tom T. Hartley, Variable Order and Distributed Order Fractional Operators Nonlinear Dynamics. ,vol. 29, pp. 57- 98 ,(2002) , 10.1023/A:1016586905654
S. G. Samko, Fractional integration and differentiation of variable order Analysis Mathematica. ,vol. 21, pp. 213- 236 ,(1995) , 10.1007/BF01911126
A V Chechkin, R Gorenflo, I M Sokolov, Fractional diffusion in inhomogeneous media Journal of Physics A: Mathematical and General. ,vol. 38, pp. L679- L684 ,(2005) , 10.1088/0305-4470/38/42/L03
Ralf Metzler, Joseph Klafter, From stretched exponential to inverse power-law: fractional dynamics, Cole–Cole relaxation processes, and beyond Journal of Non-Crystalline Solids. ,vol. 305, pp. 81- 87 ,(2002) , 10.1016/S0022-3093(02)01124-9
Bruce J. West, Elvis L. Geneston, Paolo Grigolini, Maximizing information exchange between complex networks Physics Reports. ,vol. 468, pp. 1- 99 ,(2008) , 10.1016/J.PHYSREP.2008.06.003
A. V. Chechkin, V. Yu. Gonchar, R. Gorenflo, N. Korabel, I. M. Sokolov, Generalized fractional diffusion equations for accelerating subdiffusion and truncated Lévy flights. Physical Review E. ,vol. 78, pp. 021111- ,(2008) , 10.1103/PHYSREVE.78.021111
Jing-Dong Bao, Yi-Zhong Zhuo, Ballistic diffusion induced by a thermal broadband noise. Physical Review Letters. ,vol. 91, pp. 138104- ,(2003) , 10.1103/PHYSREVLETT.91.138104