A Plactic Algebra for Semisimple Lie Algebras

作者: Peter Littelmann

DOI: 10.1006/AIMA.1996.0085

关键词:

摘要: A plactic algebra can be thought of as a (non-commutative) model for the representation ring semisimple Lie g. This was introduced by Lascoux and Schutzenberger in [13], [18] order to study theory GLn(C) Sn. new tool enabled them example give first rigouros proof Littlewood-Richardson rule determine decomposition tensor products into direct sums irreducible representations. Using case analysis, such has been constructed also some other simple groups, see [1], [8], [19], [20], [21]. Recently, two constructions isomorphic algebras have given symmetrisable Kac-Moody algebras. From point view quantum this is crystal bases ([5], [6], [7], [16], [17], [19]). The second construction realizes ZP equivalence classes paths space XQ rational weights [14], [15]). For simplicity, assume that G simple, simply connected algebraic group. To description which more spirit original work Schutzenberger, let V = Vλ1 ⊕ . .⊕Vλr faithful D associated set L-S paths, i.e. basis corresponding ZP. Let Z{D} free associative generated D. If λ ∑ aωω dominant weight, then |λ| denote sum aω. canonical projection maps monomial concatenation:

参考文章(18)
Masaki Kashiwara, The crystal base and Littelmann’s refined Demazure character formula Duke Mathematical Journal. ,vol. 71, pp. 839- 858 ,(1993) , 10.1215/S0012-7094-93-07131-1
Nicolas Bourbaki, Groupes et algèbres de Lie Hermann. ,(1971)
R. C. King, Weight multiplicities for the classical groups Group Theoretical Methods in Physics. ,vol. 50, pp. 490- 499 ,(1976) , 10.1007/3-540-07789-8_51
Peter Littelmann, A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras. Inventiones Mathematicae. ,vol. 116, pp. 329- 346 ,(1994) , 10.1007/BF01231564
Sheila Sundaram, Orthogonal tableaux and an insertion algorithm for SO (2 n + 1) Journal of Combinatorial Theory, Series A. ,vol. 53, pp. 239- 256 ,(1990) , 10.1016/0097-3165(90)90059-6
P. Littelmann, Crystal Graphs and Young Tableaux Journal of Algebra. ,vol. 175, pp. 65- 87 ,(1995) , 10.1006/JABR.1995.1175
Allan Berele, A Schensted-type correspondence for the symplectic group Journal of Combinatorial Theory, Series A. ,vol. 43, pp. 320- 328 ,(1986) , 10.1016/0097-3165(86)90070-1
Masaki Kashiwara, Crystalizing the $q$-analogue of universal enveloping algebras Communications in Mathematical Physics. ,vol. 133, pp. 249- 260 ,(1990) , 10.1007/BF02097367