Innovations and entropy rate with applications in factorization, spectral estimation, and prediction

作者: Athanasios Papoulis

DOI: 10.1007/978-94-011-2791-2_12

关键词:

摘要: The concept of innovations is introduced as the base orthonormal representation a random process and result used to simplify estimation spectrum an ARMA process. model conceptually justified in terms principle maximum entropy generalized context rate.

参考文章(9)
CE Shennon, Warren Weaver, A mathematical theory of communication Bell System Technical Journal. ,vol. 27, pp. 379- 423 ,(1948) , 10.1002/J.1538-7305.1948.TB01338.X
A. Papoulis, Maximum entropy and spectral estimation: A review IEEE Transactions on Acoustics, Speech, and Signal Processing. ,vol. 29, pp. 1176- 1186 ,(1981) , 10.1109/TASSP.1981.1163713
R. B. McQuistan, J. L. Hock, An exact recursion for the composite nearest‐neighbor degeneracy for a 2×N lattice space Journal of Mathematical Physics. ,vol. 25, pp. 261- 265 ,(1984) , 10.1063/1.526133
A. Papoulis, Levinson’s Algorithm, Wold’s Decomposition, and Spectral Estimation SIAM Review. ,vol. 27, pp. 405- 441 ,(1985) , 10.1137/1027110
M. Kaveh, High resolution spectral estimation for noisy signals IEEE Transactions on Acoustics, Speech, and Signal Processing. ,vol. 27, pp. 286- 287 ,(1979) , 10.1109/TASSP.1979.1163243
Leonard J. Savage, Ulf Grenander, Gabor Szego, Toeplitz Forms and Their Applications. Journal of the American Statistical Association. ,vol. 53, pp. 763- ,(1958) , 10.2307/2282065
Athanasios Papoulis, The Fourier integral and its applications ,(1962)
Warren Weaver, Claude E. Shannon, The mathematical theory of communication IEEE Transactions on Instrumentation and Measurement. ,(1949)