L0-Norm and Total Variation for Wavelet Inpainting

作者: Andy C. Yau , Xue-Cheng Tai , Michael K. Ng

DOI: 10.1007/978-3-642-02256-2_45

关键词:

摘要: In this paper, we suggest an algorithm to recover image whose wavelet coefficients are partially lost. We propose a inpainting model by using L 0 -norm and the total variation (TV) minimization. Traditionally, is replaced 1 or 2 due numerical difficulties. use alternating minimization technique overcome these order improve efficiency, also apply graph cut solve subproblem related TV Numerical results will be given demonstrate our advantages of proposed algorithm.

参考文章(23)
Xue-Cheng Tai, Stanley Osher, Randi Holm, Image Inpainting Using a TV-Stokes Equation Springer, Berlin, Heidelberg. pp. 3- 22 ,(2007) , 10.1007/978-3-540-33267-1_1
Antonin Chambolle, Total Variation Minimization and a Class of Binary MRF Models Lecture Notes in Computer Science. pp. 136- 152 ,(2005) , 10.1007/11585978_10
Florent Ranchin, Antonin Chambolle, Françoise Dibos, Total Variation Minimization and Graph Cuts for Moving Objects Segmentation Lecture Notes in Computer Science. pp. 743- 753 ,(2007) , 10.1007/978-3-540-72823-8_64
Yumei Huang, Michael K. Ng, You-Wei Wen, A FAST TOTAL VARIATION MINIMIZATION METHOD FOR IMAGE RESTORATION Multiscale Modeling & Simulation. ,vol. 7, pp. 774- 795 ,(2008) , 10.1137/070703533
Yilun Wang, Junfeng Yang, Wotao Yin, Yin Zhang, A New Alternating Minimization Algorithm for Total Variation Image Reconstruction Siam Journal on Imaging Sciences. ,vol. 1, pp. 248- 272 ,(2008) , 10.1137/080724265
Jian-Feng Cai, Raymond H. Chan, Zuowei Shen, A framelet-based image inpainting algorithm Applied and Computational Harmonic Analysis. ,vol. 24, pp. 131- 149 ,(2008) , 10.1016/J.ACHA.2007.10.002
Tony F. Chan, Jianhong Shen, Hao-Min Zhou, Total Variation Wavelet Inpainting Journal of Mathematical Imaging and Vision. ,vol. 25, pp. 107- 125 ,(2006) , 10.1007/S10851-006-5257-3
Jianhong Shen, Tony F. Chan, MATHEMATICAL MODELS FOR LOCAL NONTEXTURE INPAINTINGS Siam Journal on Applied Mathematics. ,vol. 62, pp. 1019- 1043 ,(2002) , 10.1137/S0036139900368844
David L. Donoho, For most large underdetermined systems of linear equations the minimal 1-norm solution is also the sparsest solution Communications on Pure and Applied Mathematics. ,vol. 59, pp. 797- 829 ,(2006) , 10.1002/CPA.20132