Standard Bases of Differential Ideals

作者: François Ollivier

DOI: 10.1007/3-540-54195-0_60

关键词:

摘要: The aim of this paper is to introduce a new definition standard bases differential ideals, allowing more general orderings than the previous one, given by Giuseppa Carra-Ferro, and following bases, in [O3], valid for algebraic canonical subalgebras, etc.

参考文章(18)
A. Robinson, A. Seidenberg, An elimination theory for differential algebra The Mathematical Gazette. ,vol. 43, pp. 72- ,(1959) , 10.2307/3608912
Jean-François Pommaret, Akli Haddak, Effective Methods for Systems of Algebraic Partial Differential Equations Birkhäuser, Boston, MA. pp. 411- 426 ,(1991) , 10.1007/978-1-4612-0441-1_27
Deepak Kapur, Klaus Madlener, A Completion Procedure for Computing a Canonical Basis for a k-Subalgebra Computers and Mathematics. pp. 1- 11 ,(1989) , 10.1007/978-1-4613-9647-5_1
J. F. Pommaret, Differential Galois Theory ,(1983)
Giuseppa Carra' Ferro, Gröbner bases and differential algebra Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. pp. 129- 140 ,(1989) , 10.1007/3-540-51082-6_73
Maurice Janet, Sur les systèmes d'équations aux dérivées partielles Thèses françaises de l'entre-deux-guerres. ,vol. 19, pp. 1- 91 ,(1920)
J{ános Koll{ár, Sharp effective Nullstellensatz Journal of the American Mathematical Society. ,vol. 1, pp. 963- 975 ,(1988) , 10.1090/S0894-0347-1988-0944576-7