On-line coloring of perfect graphs

作者: H. A. Kierstead , K. Kolossa

DOI: 10.1007/BF01271267

关键词:

摘要: Lovasz, Saks, and Trotter showed that there exists an on-line algorithm which will color any on-linek-colorable graph onn vertices withO(nlog(2k−3) n/log(2k−4) n) colors. Vishwanathan at least Ω(log k−1 n/k k ) colors are needed. While these remain the best known bounds, they give a distressingly weak approximation of number required. In this article we study case perfect graphs. We prove withn 10k/loglogn Vishwanathan's techniques can be slightly modified to show his lower bound also holds for This suggests is far from tight in general case.

参考文章(6)
H. A. Kierstead, The linearity of first-fit coloring of interval graphs SIAM Journal on Discrete Mathematics. ,vol. 1, pp. 526- 530 ,(1988) , 10.1137/0401048
Henry A. Kierstead, Stephen G. Penrice, William T. Trotter, On-Line and First-Fit Coloring of Graphs That Do Not Induce $P_5$ SIAM Journal on Discrete Mathematics. ,vol. 8, pp. 485- 498 ,(1995) , 10.1137/S0895480191218861
Sundar Vishwanathan, Randomized online graph coloring Journal of Algorithms. ,vol. 13, pp. 657- 669 ,(1992) , 10.1016/0196-6774(92)90061-G
H. A. Kierstead, S. G. Penrice, W. T. Trotter, On-Line Coloring and Recursive Graph Theory SIAM Journal on Discrete Mathematics. ,vol. 7, pp. 72- 89 ,(1994) , 10.1137/S0895480192224737
S. Irani, Coloring inductive graphs on-line foundations of computer science. pp. 470- 479 ,(1990) , 10.1109/FSCS.1990.89568
András Gyárfás, Jenö Lehel, On‐line and first fit colorings of graphs Journal of Graph Theory. ,vol. 12, pp. 217- 227 ,(1988) , 10.1002/JGT.3190120212