Multilayer Perceptrons: Architecture and Error Backpropagation

作者: Ke-Lin Du , MNS Swamy , Ke-Lin Du , MNS Swamy

DOI: 10.1007/978-1-4471-5571-3_4

关键词:

摘要: MLPs are feedforward networks with one or more layers of units between the input and output layers. The represent a hyperplane in space patterns. architecture MLP is illustrated Fig. 4.1.

参考文章(160)
Fernando M. Silva, Luis B. Almeida, Speeding up Backpropagation Advanced Neural Computers. pp. 151- 158 ,(1990) , 10.1016/B978-0-444-88400-8.50022-4
Matthew Kabrisky, Dennis W. Ruck, Steven K. Rogers, Wright-Patterson Afb, Feature Selection Using a Multilayer Perceptron ,(1990)
Roberto Battiti, Accelerated Backpropagation Learning: Two Optimization Methods. Complex Systems. ,vol. 3, ,(1989)
Rolf Eckmiller, Advanced neural computers North-Holland , Elsevier Science. ,(1990)
Olivier Cappé, Aurélien Garivier, Emilie Kaufmann, On the complexity of best-arm identification in multi-armed bandit models Journal of Machine Learning Research. ,vol. 17, pp. 1- 42 ,(2016)
S.C. Ng, S.H. Leung, A. Luk, Fast Convergent Generalized Back-Propagation Algorithm with Constant Learning Rate Neural Processing Letters. ,vol. 9, pp. 13- 23 ,(1999) , 10.1023/A:1018611626332
J.J. Choi, P. Arabshahi, R.J. Marks, T.P. Caudell, Fuzzy parameter adaptation in neural systems international joint conference on neural network. ,vol. 1, pp. 232- 238 ,(1992) , 10.1109/IJCNN.1992.287130
M. Pfister, R. Rojas, Speeding-up backpropagation-a comparison of orthogonal techniques international joint conference on neural network. ,vol. 1, pp. 517- 523 ,(1993) , 10.1109/IJCNN.1993.713967
A. Cochocki, Rolf Unbehauen, Neural networks for optimization and signal processing ,(1993)
Stavros J. Perantonis, Vassilis Virvilis, Input Feature Extraction for Multilayered Perceptrons Using Supervised Principal Component Analysis Neural Processing Letters. ,vol. 10, pp. 243- 252 ,(1999) , 10.1023/A:1018792728057