Trustworthy dimension reduction for visualization different data sets

作者: Safa A. Najim , Ik Soo Lim

DOI: 10.1016/J.INS.2014.03.048

关键词:

摘要: A new nonlinear dimension reduction (DR) method which is called Trustworthy Stochastic Proximity Embedding (TSPE) is introduced in this paper to visualize different types of data …

参考文章(46)
Lawrence K. Saul, Killan Q. Weinberger, An introduction to nonlinear dimensionality reduction by maximum variance unfolding national conference on artificial intelligence. pp. 1683- 1686 ,(2006)
Nello Cristianini, John Shawe-Taylor, Kernel Methods for Pattern Analysis ,(2004)
Neil Mac Parthaláin, Richard Jensen, Unsupervised fuzzy-rough set-based dimensionality reduction Information Sciences. ,vol. 229, pp. 106- 121 ,(2013) , 10.1016/J.INS.2012.12.001
Max Mignotte, A Bicriteria-Optimization-Approach-Based Dimensionality-Reduction Model for the Color Display of Hyperspectral Images IEEE Transactions on Geoscience and Remote Sensing. ,vol. 50, pp. 501- 513 ,(2012) , 10.1109/TGRS.2011.2160646
Rodrigo T. Peres, Claus Aranha, Carlos E. Pedreira, Optimized bi-dimensional data projection for clustering visualization Information Sciences. ,vol. 232, pp. 104- 115 ,(2013) , 10.1016/J.INS.2012.12.041
Dimitris K. Agrafiotis, Huafeng Xu, Fangqiang Zhu, Deepak Bandyopadhyay, Pu Liu, Stochastic Proximity Embedding: Methods and Applications Molecular Informatics. ,vol. 29, pp. 758- 770 ,(2010) , 10.1002/MINF.201000134
Joshua B Tenenbaum, Vin de Silva, John C Langford, A Global Geometric Framework for Nonlinear Dimensionality Reduction Science. ,vol. 290, pp. 2319- 2323 ,(2000) , 10.1126/SCIENCE.290.5500.2319
Lisha Chen, Andreas Buja, Local Multidimensional Scaling for Nonlinear Dimension Reduction, Graph Drawing, and Proximity Analysis Journal of the American Statistical Association. ,vol. 104, pp. 209- 219 ,(2009) , 10.1198/JASA.2009.0111