Finite Sample Properties and Asymptotic Efficiency of Monte Carlo Tests

作者: Karl-Heinz Jockel

DOI: 10.1214/AOS/1176349860

关键词:

摘要: Since their introduction by Dwass (1957) and Barnard (1963), Monte Carlo tests have attracted considerable attention. The aim of this paper is to give a unified approach that covers the case an arbitrary null distribution in order study statistical properties under hypothesis alternative. For finite samples we obtain bounds for power test with original allow determination required simulation effort. Furthermore concept asymptotic (resp. local asymptotic) relative Pitman efficiency (ARPE, resp. LARPE) adapted behaviour. normal limit investigated more detail, leading explicit formulas ARPE LARPE.

参考文章(18)
K.-H. Jöckel, Computational Aspects of Monte Carlo Tests Compstat 1984. pp. 183- 188 ,(1984) , 10.1007/978-3-642-51883-6_25
F. H. C. Marriott, Barnard's Monte Carlo Tests: How Many Simulations? Journal of The Royal Statistical Society Series C-applied Statistics. ,vol. 28, pp. 75- 77 ,(1979) , 10.2307/2346816
Karl-Heinz Jöckel, Eigenschaften und effektive Anwendung von Monte-Carlo-Tests [Universität Dortmund]. ,(1982)
Julian Besag, Peter J. Diggle, Simple Monte Carlo Tests for Spatial Pattern Applied Statistics. ,vol. 26, pp. 327- 333 ,(1977) , 10.2307/2346974
Meyer Dwass, Modified Randomization Tests for Nonparametric Hypotheses Annals of Mathematical Statistics. ,vol. 28, pp. 181- 187 ,(1957) , 10.1214/AOMS/1177707045
David B. Peizer, John W. Pratt, A Normal Approximation for Binomial, F, Beta, and other Common, Related Tail Probabilities, II Journal of the American Statistical Association. ,vol. 63, pp. 1457- 1483 ,(1968) , 10.1080/01621459.1968.10480938
Hubert W. Lilliefors, On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown Journal of the American Statistical Association. ,vol. 62, pp. 399- 402 ,(1967) , 10.2307/2283970
Gunter Rothe, Some Properties of the Asymptotic Relative Pitman Efficiency Annals of Statistics. ,vol. 9, pp. 663- 669 ,(1981) , 10.1214/AOS/1176345470
Hubert W. Lilliefors, On the Kolmogorov-Smirnov Test for the Exponential Distribution with Mean Unknown Journal of the American Statistical Association. ,vol. 64, pp. 387- 389 ,(1969) , 10.1080/01621459.1969.10500983
R. K. Tsutakawa, S. L. Yang, Permutation Tests Applied to Antibiotic Drug Resistance Journal of the American Statistical Association. ,vol. 69, pp. 87- 92 ,(1974) , 10.1080/01621459.1974.10480132