Bicomplexes, integrable models, and noncommutative geometry

作者: ARISTOPHANES DIMAKIS , FOLKERT MÜLLER-HOISSEN

DOI: 10.1142/S0217979200001977

关键词:

摘要: We discuss a relation between bicomplexes and integrable models, consider corresponding noncommutative (Moyal) deformations. As an example, version of Toda field theory is presented.

参考文章(6)
Hugo Garcia-Compean, Maciej Przanowski, Jerzy F. Plebanski, GEOMETRY ASSOCIATED WITH SELF-DUAL YANG-MILLS AND THE CHIRAL MODEL APPROACHES TO SELF-DUAL GRAVITY Acta Physica Polonica B. ,vol. 29, pp. 549- 571 ,(1997)
Ludwig D. Faddeev, Leon A. Takhtajan, Hamiltonian methods in the theory of solitons ,(1987)
Folkert Müller-Hoissen, Aristophanes Dimakis, SOLITON EQUATIONS AND THE ZERO CURVATURE CONDITION IN NONCOMMUTATIVE GEOMETRY Journal of Physics A. ,vol. 29, pp. 7279- 7286 ,(1996) , 10.1088/0305-4470/29/22/022
I.A.B. Strachan, A geometry for multidimensional integrable systems Journal of Geometry and Physics. ,vol. 21, pp. 255- 278 ,(1997) , 10.1016/S0393-0440(96)00019-8
Aristophanes Dimakis, Folkert Müller-Hoissen, Soliton equations and the zero curvature condition in noncommutative geometry arXiv: High Energy Physics - Theory. ,(1996) , 10.1088/0305-4470/29/22/022
A Dimakis, F Müller-Hoissen, Bi-differential calculi and integrable models Journal of Physics A. ,vol. 33, pp. 957- 974 ,(2000) , 10.1088/0305-4470/33/5/311