Tangent method for the arctic curve arising from freezing boundaries

作者: Bryan Debin , Philippe Ruelle

DOI: 10.1088/1742-5468/AB4FDD

关键词:

摘要: In the paper arXiv:1803.11463, authors study arctic curve arising in random tilings of some planar domains with an arbitrary distribution defects on one edge. Using tangent method they derive a parametric equation for portions terms piecewise differentiable function that describes defect distribution. When this presents "freezing" intervals, other appear and typically have cusp. These freezing boundaries can be two types, respectively maximal or minimal density defects. Our purpose here is to extend derivation arXiv:1803.11463 include these portions, hence answering open question stated arXiv:1803.11463.

参考文章(6)
É. Janvresse, T. de la Rue, Y. Velenik, A note on domino shuffling Electronic Journal of Combinatorics. ,vol. 13, pp. 30- ,(2006) , 10.37236/1056
Leonid Petrov, Asymptotics of random lozenge tilings via Gelfand–Tsetlin schemes Probability Theory and Related Fields. ,vol. 160, pp. 429- 487 ,(2014) , 10.1007/S00440-013-0532-X
Erik Duse, Anthony Metcalfe, Asymptotic geometry of discrete interlaced patterns: Part I International Journal of Mathematics. ,vol. 26, pp. 1550093- ,(2015) , 10.1142/S0129167X15500937
F. Colomo, A. Sportiello, Arctic Curves of the Six-Vertex Model on Generic Domains: The Tangent Method Journal of Statistical Physics. ,vol. 164, pp. 1488- 1523 ,(2016) , 10.1007/S10955-016-1590-0
Nicolas Allegra, Jean-Marie Stéphan, Jérôme Dubail, Jacopo Viti, Inhomogeneous field theory inside the arctic circle Journal of Statistical Mechanics: Theory and Experiment. ,vol. 2016, pp. 053108- ,(2016) , 10.1088/1742-5468/2016/05/053108
Nicolas Allegra, Jérôme Dubail, Jean-Marie Stéphan, Jacopo Viti, Inhomogeneous field theory inside the arctic circle arXiv: Statistical Mechanics. ,(2015) , 10.1088/1742-5468/2016/05/053108