On convergence of the multi-objective particle swarm optimizers

作者: Prithwish Chakraborty , Swagatam Das , Gourab Ghosh Roy , Ajith Abraham , None

DOI: 10.1016/J.INS.2010.11.036

关键词:

摘要: Several variants of the particle swarm optimization (PSO) algorithm have been proposed in recent past to tackle multi-objective (MO) problems based on concept Pareto optimality. Although a plethora significant research articles so far published analysis stability and convergence properties PSO as single-objective optimizer, till date, best our knowledge, no such exists for (MOPSO) algorithms. This paper presents first, simple general Pareto-based MOPSO finds conditions its most important control parameters (the inertia factor acceleration coefficients) that govern behavior optimal front objective function space. Computer simulations over benchmark MO also provided substantiate theoretical derivations.

参考文章(44)
Carlos A. Coello Coello, Gary B. Lamont, David A. Van Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) Springer-Verlag New York, Inc.. ,(2006)
Katsuhiko Ogata, Discrete-time control systems ,(1987)
Juan J. Durillo, Antonio J. Nebro, José García-Nieto, Enrique Alba, On the Velocity Update in Multi-Objective Particle Swarm Optimizers Advances in Multi-Objective Nature Inspired Computing. pp. 45- 62 ,(2010) , 10.1007/978-3-642-11218-8_3
Sabine Helwig, Rolf Wanka, Theoretical Analysis of Initial Particle Swarm Behavior parallel problem solving from nature. pp. 889- 898 ,(2008) , 10.1007/978-3-540-87700-4_88
J. David Schaffer, Proceedings of the third international conference on Genetic algorithms international conference on genetic algorithms. ,(1989)
T. Ray, Constrained robust optimal design using a multiobjective evolutionary algorithm congress on evolutionary computation. ,vol. 1, pp. 419- 424 ,(2002) , 10.1109/CEC.2002.1006271
David A. Van Veldhuizen, Gary B. Lamont, Evolutionary algorithms for solving multi-objective problems ,(2002)
Xiaodong Li, A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization Genetic and Evolutionary Computation — GECCO 2003. pp. 37- 48 ,(2003) , 10.1007/3-540-45105-6_4