From Genes to Memes: Optimization by Problem-aware Evolutionary Algorithms

作者: C. Cotta

DOI:

关键词:

摘要: Memetic algorithms are population-based metaheuristics aimed to solve hard optimization problems. These techniques explicitly concerned with exploiting available knowledge in order achieve the most effective resolution of target problem. The rationale behind this philosophy, namely intrinsic theoretical limitations problem-unaware techniques, is presented work. A glimpse main features memetic algorithms, and a brief overview numerous applications these provided as well.

参考文章(106)
Pablo Moscato, Regina Berretta, The number partitioning problem: an open challenge for evolutionary computation? New ideas in optimization. pp. 261- 278 ,(1999)
Pablo Moscato, Carlos Cotta, A Gentle Introduction to Memetic Algorithms Handbook of Metaheuristics. pp. 105- 144 ,(2003) , 10.1007/0-306-48056-5_5
Éric Ramat, Gilles Venturini, Mohamed Slimane, C. Lente, Solving the Multiple Resource Constrained Project Scheduling Problem with a Hybrid Genetic Algorithm. ICGA. pp. 489- 496 ,(1997)
Carlos A. Coello Coello, Gary B. Lamont, David A. Van Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) Springer-Verlag New York, Inc.. ,(2006)
Y. Nagata, Edge Assembly Crossover.A High-power Genetic Algorithm for the Traveling Salesman Problem international conference on genetic algorithms. pp. 450- 457 ,(1997)
Diana Holstein, Pablo Moscato, Memetic algorithms using guided local search: a case study New ideas in optimization. pp. 235- 244 ,(1999)
Edmund K. Burke, Alistair J. Smith, A Memetic Algorithm for the Maintenance Scheduling Problem. international conference on neural information processing. pp. 469- 472 ,(1997)
Luciana S. Buriol, Celso C. Ribeiro, A Memetic Algorithm for OSPF Routing ,(2002)
Peter Merz, A comparison of memetic recombination operators for the traveling salesman problem genetic and evolutionary computation conference. pp. 472- 479 ,(2002)