On the highest eigenvalue and the number of walks for particular graphs

作者: Guido Luigi Ceccarossi

DOI:

关键词:

摘要:

参考文章(14)
Peter Rowlinson, Dragoš M. Cvetković, Slobodan Simić, An Introduction to the Theory of Graph Spectra ,(2009)
Michael Doob, Dragoš M. Cvetković, Horst Sachs, Spectra of graphs : theory and application Johann Ambrosius Barth Verlag. ,(1995)
Yuan Hong, Xiao-Dong Zhang, Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of trees Discrete Mathematics. ,vol. 296, pp. 187- 197 ,(2005) , 10.1016/J.DISC.2005.04.001
Aimei Yu, Mei Lu, Feng Tian, On the spectral radius of graphs Linear Algebra and its Applications. ,vol. 387, pp. 41- 49 ,(2004) , 10.1016/J.LAA.2004.01.020
A Dress, I Gutman, Asymptotic results regarding the number of walks in a graph Applied Mathematics Letters. ,vol. 16, pp. 389- 393 ,(2003) , 10.1016/S0893-9659(03)80062-9
A Dress, I Gutman, The number of walks in a graph Applied Mathematics Letters. ,vol. 16, pp. 797- 801 ,(2003) , 10.1016/S0893-9659(03)00085-5
Vladimir Nikiforov, Walks and the spectral radius of graphs Linear Algebra and its Applications. ,vol. 418, pp. 257- 268 ,(2006) , 10.1016/J.LAA.2006.02.003
Gerta Ruecker, Christoph Ruecker, Counts of all walks as atomic and molecular descriptors Journal of Chemical Information and Computer Sciences. ,vol. 33, pp. 683- 695 ,(1993) , 10.1021/CI00015A005
Ivan Gutman, Christoph Rücker, Gerta Rücker, On walks in molecular graphs. Journal of Chemical Information and Computer Sciences. ,vol. 41, pp. 739- 745 ,(2001) , 10.1021/CI000149U
Hanjo Täubig, Jeremias Weihmann, Matrix power inequalities and the number of walks in graphs Discrete Applied Mathematics. ,vol. 176, pp. 122- 129 ,(2014) , 10.1016/J.DAM.2013.10.002