Caffe: Convolutional Architecture for Fast Feature Embedding

作者: Yangqing Jia , Evan Shelhamer , Jeff Donahue , Sergey Karayev , Jonathan Long

DOI: 10.1145/2647868.2654889

关键词:

摘要: Caffe provides multimedia scientists and practitioners with a clean modifiable framework for state-of-the-art deep learning algorithms collection of reference models. The is BSD-licensed C++ library Python MATLAB bindings training deploying general-purpose convolutional neural networks other models efficiently on commodity architectures. fits industry internet-scale media needs by CUDA GPU computation, processing over 40 million images day single K40 or Titan (approx 2 ms per image). By separating model representation from actual implementation, allows experimentation seamless switching among platforms ease development deployment prototyping machines to cloud environments.Caffe maintained developed the Berkeley Vision Learning Center (BVLC) help an active community contributors GitHub. It powers ongoing research projects, large-scale industrial applications, startup prototypes in vision, speech, multimedia.

参考文章(10)
Ronan Collobert, Clément Farabet, Koray Kavukcuoglu, Torch7: A Matlab-like Environment for Machine Learning neural information processing systems. ,(2011)
Sergio Guadarrama, Rodner Erik, Kate Saenko, Ning Zhang, Ryan Farrell, Jeff Donahue, Trevor Darrell, Open-vocabulary Object Retrieval robotics science and systems. ,vol. 10, ,(2014) , 10.15607/RSS.2014.X.041
Ian J Goodfellow, David Warde-Farley, Pascal Lamblin, Vincent Dumoulin, Mehdi Mirza, Razvan Pascanu, James Bergstra, Frédéric Bastien, Yoshua Bengio, None, Pylearn2: a machine learning research library arXiv: Machine Learning. ,(2013)
J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, A. W. M. Smeulders, Selective Search for Object Recognition International Journal of Computer Vision. ,vol. 104, pp. 154- 171 ,(2013) , 10.1007/S11263-013-0620-5
Ross Girshick, Jeff Donahue, Trevor Darrell, Jitendra Malik, Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation computer vision and pattern recognition. pp. 580- 587 ,(2014) , 10.1109/CVPR.2014.81
Ning Zhang, Manohar Paluri, Marc'Aurelio Ranzato, Trevor Darrell, Lubomir Bourdev, PANDA: Pose Aligned Networks for Deep Attribute Modeling computer vision and pattern recognition. pp. 1637- 1644 ,(2014) , 10.1109/CVPR.2014.212
Yangqing Jia, Eric Tzeng, Judy Hoffman, Jeff Donahue, Trevor Darrell, Ning Zhang, Oriol Vinyals, DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition international conference on machine learning. pp. 647- 655 ,(2014)
Ilya Sutskever, Geoffrey E. Hinton, Alex Krizhevsky, ImageNet Classification with Deep Convolutional Neural Networks neural information processing systems. ,vol. 25, pp. 1097- 1105 ,(2012)
Sergey Karayev, Aaron Hertzmann, Matthew Trentacoste, Helen Han, Holger Winnemoeller, Aseem Agarwala, Trevor Darrell, Recognizing Image Style. british machine vision conference. ,(2014) , 10.5244/C.28.122
Pierre Sermanet, Yann LeCun, David Eigen, Rob Fergus, Michael Mathieu, Xiang Zhang, OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks international conference on learning representations. ,(2014)