Generalized Nonlinear Proca Equation and its Free-Particle Solutions

作者: F. D. Nobre , A. R. Plastino

DOI: 10.1140/EPJC/S10052-016-4196-4

关键词:

摘要: We introduce a non-linear extension of Proca's field theory for massive vector (spin $1$) bosons. The associated relativistic nonlinear wave equation is related to recently advanced extensions the Schroedinger, Dirac, and Klein-Gordon equations inspired on non-extensive generalized thermostatistics. This theoretical framework that has been applied in recent years several problems nuclear particle physics, gravitational quantum theory. Proca investigated here power-law nonlinearity characterized by real parameter $q$ (formally corresponding Tsallis entropic parameter) such way standard linear recovered limit $q \rightarrow 1$. derive from Lagrangian that, besides usual vectorial $\Psi^{\mu}(\vec{x},t)$, involves an additional $\Phi^{\mu}(\vec{x},t)$. obtain exact time dependent soliton-like solutions these fields having form $q$-plane wave, show both lead energy-momentum relation $E^{2} = p^{2}c^{2} + m^{2}c^{4}$ all values $q$. suggests present constitutes new representation dynamics. In massless particles $q$-generalized reduces Maxwell electromagnetism, waves yield localized, transverse equations. Physical consequences possible applications are discussed.

参考文章(64)
A. Bialas, Tsallis p⊥ distribution from statistical clusters Physics Letters B. ,vol. 747, pp. 190- 192 ,(2015) , 10.1016/J.PHYSLETB.2015.05.076
Chris Vuille, James Ipser, Jeff Gallagher, Einstein-Proca Model, Micro Black Holes, and Naked Singularities General Relativity and Gravitation. ,vol. 34, pp. 689- 696 ,(2002) , 10.1023/A:1015942229041
J. Cleymans, M. D. Azmi, The Tsallis distribution at large transverse momenta European Physical Journal C. ,vol. 75, pp. 430- ,(2015) , 10.1140/EPJC/S10052-015-3629-9
R.W Tucker, C Wang, An Einstein-Proca-fluid model for dark matter gravitational interactions Nuclear Physics B Proceedings Supplements. ,vol. 57, pp. 259- 262 ,(1997) , 10.1016/S0920-5632(97)00399-X
Marcelo R. Ubriaco, Scalar curvature of systems with fractal distribution functions Physics Letters A. ,vol. 376, pp. 2899- 2902 ,(2012) , 10.1016/J.PHYSLETA.2012.07.023
R. Tomaschitz, Tachyonic spectral fits of γ-ray bursts EPL. ,vol. 89, pp. 39002- ,(2010) , 10.1209/0295-5075/89/39002
H. Belich, T. Costa-Soares, M. M. Ferreira, J. A. Helayël-Neto, Classical solutions in a Lorentz violating scenario of Maxwell-Chern-Simons-Proca electrodynamics European Physical Journal C. ,vol. 42, pp. 127- 137 ,(2005) , 10.1140/EPJC/S2005-02253-6
W. Pauli, Relativistic Field Theories of Elementary Particles Reviews of Modern Physics. ,vol. 13, pp. 203- 232 ,(1941) , 10.1103/REVMODPHYS.13.203
Constantino Tsallis, Possible generalization of Boltzmann-Gibbs statistics Journal of Statistical Physics. ,vol. 52, pp. 479- 487 ,(1988) , 10.1007/BF01016429