Percolation, statistical topography, and transport in random media

作者: M. B. Isichenko

DOI: 10.1103/REVMODPHYS.64.961

关键词:

摘要: A review of classical percolation theory is presented, with an emphasis on novel applications to statistical topography, turbulent diffusion, and heterogeneous media. Statistical topography involves the geometrical properties isosets (contour lines or surfaces) a random potential $\ensuremath{\psi}(\mathrm{x})$. For rapidly decaying correlations $\ensuremath{\psi}$, isopotentials fall into same universality class as perimeters clusters. The long-range correlated potentials many length scales associated either problem Mandelbrot's fractional Brownian reliefs. In all cases, concept fractal dimension particularly fruitful in characterizing geometry fields. physical include diffusion velocity fields, heat particle transport plasmas, quantum Hall effect, magnetoresistance inhomogeneous conductors others where are relevant. approach studying media, which captures essential qualitative features described phenomena, advocated.

参考文章(330)
Benoit B. Mandelbrot, New “anomalous” multiplicative multifractals: Left sided ƒ(α) and the modelling of DLA Physica A-statistical Mechanics and Its Applications. ,vol. 168, pp. 95- 111 ,(1990) , 10.1016/0378-4371(90)90361-U
V.I. Arnol'd, Remarks on quasicrystallic symmetries Physica D: Nonlinear Phenomena. ,vol. 33, pp. 21- 25 ,(1988) , 10.1016/S0167-2789(98)90005-7
S. A. Trugman, General theory of inhomogeneous systems, using maximum entropy. Physical Review Letters. ,vol. 57, pp. 607- 610 ,(1986) , 10.1103/PHYSREVLETT.57.607
Benoit B Mandelbrot, Self-Affine Fractals and Fractal Dimension Physica Scripta. ,vol. 32, pp. 257- 260 ,(1985) , 10.1088/0031-8949/32/4/001
R C Ball, S Havlin, G H Weiss, Non-Gaussian random walks Journal of Physics A. ,vol. 20, pp. 4055- 4059 ,(1987) , 10.1088/0305-4470/20/12/052
P. Dean, N. F. Bird, Monte Carlo estimates of critical percolation probabilities Mathematical Proceedings of the Cambridge Philosophical Society. ,vol. 63, pp. 477- 479 ,(1967) , 10.1017/S0305004100041438
A. B. Rechester, M. N. Rosenbluth, Electron heat transport in a tokamak with destroyed magnetic surfaces Physical Review Letters. ,vol. 40, pp. 38- 41 ,(1978) , 10.1103/PHYSREVLETT.40.38
Hans J Herrmann, DC Hong, HE Stanley, None, Backbone and elastic backbone of percolation clusters obtained by the new method of 'burning' Journal of Physics A. ,vol. 17, ,(1984) , 10.1088/0305-4470/17/5/008
P Grassberger, On the hull of two-dimensional percolation clusters Journal of Physics A. ,vol. 19, pp. 2675- 2677 ,(1986) , 10.1088/0305-4470/19/13/032
M. S. Longuet-Higgins, Reflection and Refraction at a Random Moving Surface II Number of Specular Points in a Gaussian Surface Journal of the Optical Society of America. ,vol. 50, pp. 845- 850 ,(1960) , 10.1364/JOSA.50.000845