Stabilization of hyperbolic equations with mixed boundary conditions

作者: Xiaoyu Fu ,

DOI: 10.3934/MCRF.2015.5.761

关键词:

摘要: This paper is devoted to study decay properties of solutions to hyperbolic equations in a bounded domain with two types of dissipative mechanisms, ie either with a small boundary …

参考文章(24)
G. Lebeau, Equation des Ondes Amorties Algebraic and Geometric Methods in Mathematical Physics. pp. 73- 109 ,(1996) , 10.1007/978-94-017-0693-3_4
Kais Ammari, Dirichlet boundary stabilization of the wave equation Asymptotic Analysis. ,vol. 30, pp. 117- 130 ,(2002)
Jan Pr{üss, On the spectrum of ₀-semigroups Transactions of the American Mathematical Society. ,vol. 284, pp. 847- 857 ,(1984) , 10.1090/S0002-9947-1984-0743749-9
Jeffrey Rauch, Michael Taylor, Decay of solutions to nondissipative hyperbolic systems on compact manifolds Communications on Pure and Applied Mathematics. ,vol. 28, pp. 501- 523 ,(1975) , 10.1002/CPA.3160280405
Charles J. K. Batty, Thomas Duyckaerts, Non-uniform stability for bounded semi-groups on Banach spaces Journal of Evolution Equations. ,vol. 8, pp. 765- 780 ,(2008) , 10.1007/S00028-008-0424-1
Xiaoyu Fu, Logarithmic Decay of Hyperbolic Equations with Arbitrary Small Boundary Damping Communications in Partial Differential Equations. ,vol. 34, pp. 957- 975 ,(2009) , 10.1080/03605300903116389
Qi Lü, A lower bound on local energy of partial sum of eigenfunctions for Laplace-Beltrami operators ESAIM: Control, Optimisation and Calculus of Variations. ,vol. 19, pp. 255- 273 ,(2013) , 10.1051/COCV/2012008
Zuazua Enrike, Exponential decay for the semilinear wave equation with locally distributed damping Communications in Partial Differential Equations. ,vol. 15, pp. 205- 235 ,(1990) , 10.1080/03605309908820684
Alexander Borichev, Yuri Tomilov, Optimal polynomial decay of functions and operator semigroups Mathematische Annalen. ,vol. 347, pp. 455- 478 ,(2010) , 10.1007/S00208-009-0439-0
Nicolas Burq, Michael Hitrik, Energy decay for damped wave equations on partially rectangular domains Mathematical Research Letters. ,vol. 14, pp. 35- 47 ,(2007) , 10.4310/MRL.2007.V14.N1.A3