A kind of approximate solution technique which does not depend upon small parameters — II. An application in fluid mechanics

作者: Shi-jun Liao

DOI: 10.1016/S0020-7462(96)00101-1

关键词:

摘要: … for small values of this parameter and become useless as the value of the parameter increases. … First of all, we introduce a small parameter E and consider such a non-linear equation …

参考文章(17)
Heinrich Blasius, Grenzschichten in Flüssigkeiten mit kleiner Reibung B.G. Teubner. ,(1907)
Georges Papy, Topologie als Grundlage des Analysis-Unterrichts Vandenhoeck & Ruprecht. ,(1968)
Young I. Cho, George A. Greene, Thomas F. Irvine, J. P. Hartnett, Advances in Heat Transfer ,(2003)
Rand Corporation, Exact Similar Solutions of the Laminar Boundary-Layer Equations Advances in heat transfer. ,vol. 4, pp. 317- 446 ,(1967) , 10.1016/S0065-2717(08)70276-4
A. M. Smith, T. Cebeci, NUMERICAL SOLUTION OF THE TURBULENT-BOUNDARY-LAYER EQUATIONS Defense Technical Information Center. ,(1967) , 10.21236/AD0656430
Ali Hasan Nayfeh, Problems in Perturbation ,(1985)
'Alī Hasan Nā'ifa, Introduction to perturbation techniques ,(1981)
Martha L. Abell, James P. Braselton, The Mathematica Handbook ,(1992)
Shi-Jun Liao, An approximate solution technique not depending on small parameters: A special example International Journal of Non-linear Mechanics. ,vol. 30, pp. 371- 380 ,(1995) , 10.1016/0020-7462(94)00054-E