Interpolatory Subdivision Schemes Generated by Splines

作者: Amir Z. Averbuch , Valery A. Zheludev , Marina Gruzd

DOI:

关键词:

摘要: We present interpolatory subdivision schemes (ISS) based on polynomial and discrete splines. These converge any initial data of power growth, limit functions are regular. Although the masks ISS's infinite, compu- tational cost their implementation is competitive with finite masks.

参考文章(7)
I.J Schoenberg, Cardinal interpolation and spline functions Journal of Approximation Theory. ,vol. 2, pp. 167- 206 ,(1969) , 10.1016/0021-9045(69)90040-9
Gilles Deslauriers, Serge Dubuc, Symmetric Iterative Interpolation Processes Constructive Approximation. ,vol. 5, pp. 49- 68 ,(1989) , 10.1007/978-1-4899-6886-9_3
Nira Dyn, John A. Gregory, David Levin, Analysis of uniform binary subdivision schemes for curve design Constructive Approximation. ,vol. 7, pp. 127- 147 ,(1991) , 10.1007/BF01888150
Alexander B. Pevnyi, Valery A. Zheludev, On the Interpolation by Discrete Splines with Equidistant Nodes Journal of Approximation Theory. ,vol. 102, pp. 286- 301 ,(2000) , 10.1006/JATH.1999.3411
Amir Z. Averbuch, Alexander B. Pevnyi, Valery A. Zheludev, Butterworth wavelet transforms derived from discrete interpolatory splines : recursive implementation Signal Processing. ,vol. 81, pp. 2363- 2382 ,(2001) , 10.1016/S0165-1684(01)00122-0