MODELADO FORMAL PARA REPRESENTACI

作者: Inteligencia Artiflcial

DOI:

关键词:

摘要:

参考文章(119)
Eyke Hüllermeier, Association Rules for Expressing Gradual Dependencies european conference on principles of data mining and knowledge discovery. pp. 200- 211 ,(2002) , 10.1007/3-540-45681-3_17
Daniel Sánchez, María Amparo Vila Miranda, Carlos Molina, José-María Serrano, Managing the Absence of Items in Fuzzy Association Mining european society for fuzzy logic and technology conference. pp. 1571- 1576 ,(2009)
Daniel Sánchez, Miguel Delgado, M.D. Ruiz, A Logic Approach for Exceptions and Anomalies in Association Rules soft computing. ,vol. 15, pp. 285- 295 ,(2008)
Daniel Sánchez, María Amparo Vila Miranda, C. Molina, J. M. Serrano, Mining gracruardependencies with variation strength soft computing. ,vol. 15, pp. 75- 93 ,(2008)
Gregory Piatetsky-Shapiro, Discovery, Analysis, and Presentation of Strong Rules Knowledge Discovery in Databases. pp. 229- 238 ,(1991)
Gregory Piatetsky-Shapiro, Christopher J. Matheus, The interestingness of deviations knowledge discovery and data mining. pp. 25- 36 ,(1994)
Frank Höppner, Local pattern detection and clustering Lecture Notes in Computer Science. pp. 53- 70 ,(2004) , 10.1007/11504245_4
Didier Dubois, Eyke Hüllermeier, Henri Prade, A note on quality measures for fuzzy association rules Lecture Notes in Computer Science. pp. 346- 353 ,(2003) , 10.1007/3-540-44967-1_41
Pedro Gago, Carlos Bento, None, A metric for selection of the most promising rules Principles of Data Mining and Knowledge Discovery. pp. 19- 27 ,(1998) , 10.1007/BFB0094801