作者: Mitsuhiko Shimada
DOI:
关键词:
摘要: 1. Introduction 2. Triaxial testing under high confining pressures 2.1. 2.2.1. Conventional apparatus 2.2.2. Solid-medium Griggs type 2.2.3. Cubic press 2.2.4. Ultra-high pressure 2.3. The method of triaxial in a cubic 2.3.1. Apparatus and sample assembly 2.3.2. Experimental procedures at room temperature 2.3.3. temperatures Appendix Pressure scale 2.2. Observed examples the effect axial loading on 3. Experimemtal results low porosity silicate rocks 3.1. Compressive strength 3.1.1. dependence moderate 3.1.2. 3.2. Acoustic emission 3.3. Frictional 3.4. Fault features 3.4.1. Sample preparation 3.4.2. Features faulting Stress-strain curves Strength data 4. Two types brittle fracture 4.1. High 4.1.1. Comparison with previous experiments 4.1.2. Transitional regime semibrittle 4.2. Other two 4.2.1. Gneiss 4.2.2. Experiments 4.2.3. Temperature high-pressure 4.3. Micromechanics 4.3.1. 4.3.2. Micro-fracture styles 4.3.3. Discussion mechanisms fracturing 4.3.4. Summary elevated 5. Geophysical geological implications 5.1. conditions for application to earth's interior 5.2. size rock 5.2.1. uniaxial compressive characteristic length 5.2.2. 5.2.3. Implications crust 5.3. lithosphere 5.3.1. Brittle-ductile model 5.3.2. A including 5.4. An approach earthquake prediction research 6. Mechanical behavior porous 6.1. 6.2. properties basalt 6.2.1. Volumetric strain 6.2.2. AE activity 6.2.3. Boundaries mechanical states differential stress-confining field 6.3. Microstructural observations mechanism cataclastic ductile flow 6.3.1. Macroscopic 6.3.2. Microscopic 6.3.3. 6.4. Change 6.4.1. Creep analysis equivalent viscosity 6.4.2. Pressure-induced change 6.5. High-pressure embrittlement 6.5.1. sandstone 6.5.2. eclogite 6.5.3. Conditions 6.6. Structure fault zone related geophysical deformation dry Yakuno 7% Characteristics large displacement