Methodology and convergence rates for functional linear regression

作者: Joel L. Horowitz , Peter Hall , Peter Hall

DOI: 10.1214/009053606000000957

关键词:

摘要: In functional linear regression, the slope ``parameter'' is a function. Therefore, in nonparametric context, it determined by an infinite number of unknowns. Its estimation involves solving ill-posed problem and has points contact with range methodologies, including statistical smoothing deconvolution. The standard approach to estimating function based explicitly on principal components analysis and, consequently, spectral decomposition terms eigenvalues eigenfunctions. We discuss this detail show that certain circumstances, optimal convergence rates are achieved PCA technique. An alternative quadratic regularisation suggested shown have advantages from some view.

参考文章(27)
A. Delaigle, I. Gijbels, Estimation of integrated squared density derivatives from a contaminated sample Journal of The Royal Statistical Society Series B-statistical Methodology. ,vol. 64, pp. 869- 886 ,(2002) , 10.1111/1467-9868.00366
Deepa Kundur, Dimitrios Hatzinakos, A novel blind deconvolution scheme for image restoration using recursive filtering IEEE Transactions on Signal Processing. ,vol. 46, pp. 375- 390 ,(1998) , 10.1109/78.655423
Jeng-Min Chiou, Hans-Georg Müller, Jane-Ling Wang, Functional quasi‐likelihood regression models with smooth random effects Journal of The Royal Statistical Society Series B-statistical Methodology. ,vol. 65, pp. 405- 423 ,(2003) , 10.1111/1467-9868.00393
J. O. Ramsay, B. W. Silverman, Functional Data Analysis Springer Series in Statistics. pp. 5822- 5828 ,(1997) , 10.1007/978-1-4757-7107-7
Antonio Cuevas, Manuel Febrero, Ricardo Fraiman, Linear functional regression: The case of fixed design and functional response Canadian Journal of Statistics-revue Canadienne De Statistique. ,vol. 30, pp. 285- 300 ,(2002) , 10.2307/3315952
Leonard A. Stefanski, Raymond J. Carroll, Deconvoluting kernel density estimators North Carolina State University. Dept. of Statistics. ,(1987)
David Ruppert, Leonard A. Stefanski, Raymond J. Carroll, Measurement Error in Nonlinear Models ,(1995)
Hervé Cardot, Pascal Sarda, Linear Regression Models for Functional Data Contributions to Statistics. pp. 49- 66 ,(2006) , 10.1007/3-7908-1701-5_4
James L. Powell, Richard Blundell, Endogeneity in nonparametric and semiparametric regression models In: Dewatripont, M. and Hansen, L.P. and Turnovsky, S.J., (eds.) Advances in Economics and Econometrics: Theory and Applications: Eighth World Congress: Volume II. (pp. 312-357). Cambridge University Press: Cambridge, UK. (2003). pp. 312- 357 ,(2001) , 10.1920/WP.CEM.2001.0901