Review of Machine Learning Approaches In Fault Diagnosis applied to IoT Systems

作者: Ndeye Gueye Lo , Jean-Marie Flaus , Olivier Adrot

DOI: 10.1109/ICCAD46983.2019.9037949

关键词:

摘要: … This review of machine learning application in fault diagnosis demonstrates that ML techniques could be a very useful tool in fault detection and diagnosis. This study shows that a …

参考文章(38)
M. Askarian, G. Escudero, M. Graells, R. Zarghami, F. Jalali-Farahani, N. Mostoufi, Fault diagnosis of chemical processes with incomplete observations: A comparative study Computers & Chemical Engineering. ,vol. 84, pp. 104- 116 ,(2016) , 10.1016/J.COMPCHEMENG.2015.08.018
Vasile Palade, Ron J. Patton, Faisel J. Uppal, Joseba Quevedo, S. Daley, FAULT DIAGNOSIS OF AN INDUSTRIAL GAS TURBINE USING NEURO-FUZZY METHODS IFAC Proceedings Volumes. ,vol. 35, pp. 471- 476 ,(2002) , 10.3182/20020721-6-ES-1901.01632
Leo H. Chiang, Mark E. Kotanchek, Arthur K. Kordon, Fault diagnosis based on Fisher discriminant analysis and support vector machines Computers & Chemical Engineering. ,vol. 28, pp. 1389- 1401 ,(2004) , 10.1016/J.COMPCHEMENG.2003.10.002
Massieh Najafi, David M. Auslander, Peter L. Bartlett, Philip Haves, Michael D. Sohn, Application of machine learning in the fault diagnostics of air handling units Applied Energy. ,vol. 96, pp. 347- 358 ,(2012) , 10.1016/J.APENERGY.2012.02.049
Riyad Alshammari, Sumalee Sonamthiang, Mohsen Teimouri, Denis Riordan, Using Neuro-Fuzzy Approach to Reduce False Positive Alerts conference on communication networks and services research. pp. 345- 349 ,(2007) , 10.1109/CNSR.2007.70
Penghua Li, Yi Chai, Ming Cen, Yifeng Qiu, Ke Zhang, Multiple fault diagnosis of analog circuit using quantum hopfield neural network chinese control and decision conference. pp. 4238- 4243 ,(2013) , 10.1109/CCDC.2013.6561695
Bo-Suk Yang, Xiao Di, Tian Han, Random forests classifier for machine fault diagnosis Journal of Mechanical Science and Technology. ,vol. 22, pp. 1716- 1725 ,(2008) , 10.1007/S12206-008-0603-6
D. Nauck, U. Nauck, R. Kruse, Generating classification rules with the neuro-fuzzy system NEFCLASS north american fuzzy information processing society. pp. 466- 470 ,(1996) , 10.1109/NAFIPS.1996.534779